
Roger Frety

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4565395/publications.pdf Version: 2024-02-01

ROCER FRETV

#	Article	IF	CITATIONS
1	Reduction of cerias with different textures by hydrogen and their reoxidation by oxygen. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 773-781.	1.7	267
2	Influence of sulphidation conditions on the properties of NiW/Al2O3 hydrotreating catalysts. Catalysis Today, 1988, 4, 39-55.	4.4	92
3	Characterization of palladium-copper bimetallic catalysts supported on silica and niobia. Applied Catalysis, 1991, 78, 125-139.	0.8	73
4	Temperature-programmed reduction: limitation of the technique for determining the extent of reduction of either pure ceria or ceria modified by additiv. Applied Catalysis A: General, 1993, 98, 99-114.	4.3	61
5	Determination of the Accessible Metallic Surface of Supported Platinum Quantitative Infrared Spectroscopic Study of Carbon Monoxide Adsorption. Applied Catalysis, 1990, 59, 153-163.	0.8	52
6	Characterization of Model Three-Way Catalysts. Journal of Catalysis, 1997, 166, 229-235.	6.2	51
7	Perovskite as catalyst precursors in the partial oxidation of methane: The effect of cobalt, nickel and pretreatment. Catalysis Today, 2018, 299, 229-241.	4.4	47
8	The chemistry of coke deposits formed on a Ptî—,Sn catalyst during dehydrogenation of n-alkanes to mono-olefins. Fuel Processing Technology, 1994, 41, 13-25.	7.2	43
9	Catalytic decomposition of vegetable oil. Applied Catalysis, 1983, 5, 299-308.	0.8	41
10	Promotion of hydrogen uptake in cerium dioxide. Applied Catalysis, 1991, 78, 31-43.	0.8	41
11	Effect of the support on the fischer–tropsch synthesis with Co/Nb2O5catalysts. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3975-3980.	1.7	36
12	Mo influence on the kinetics of jatropha oil cracking over Mo/HZSM-5 catalysts. Catalysis Today, 2017, 279, 202-208.	4.4	35
13	Characterization of residual coke during burning. Industrial & Engineering Chemistry Research, 1992, 31, 1017-1021.	3.7	32
14	Cracking and hydrocracking of triglycerides for renewable liquid fuels: alternative processes to transesterification. Journal of the Brazilian Chemical Society, 2011, 22, 1206-1220.	0.6	29
15	Flash pyrolysis of model compounds adsorbed on catalyst surface: A method for screening catalysts for cracking of fatty molecules. Journal of Analytical and Applied Pyrolysis, 2014, 109, 56-64.	5.5	25
16	Study of nickel, lanthanum and niobium-based catalysts applied in the partial oxidation of methane. Catalysis Today, 2020, 344, 15-23.	4.4	21
17	Importance of pretreatment on regeneration of a Pt-Sn/Al2O3 catalyst. Fuel Processing Technology, 1995, 42, 3-17.	7.2	17
18	Effect of lithium and residual nitrate species on platinum dispersion in Pt/Al2O3 catalysts. Catalysis Letters, 1992, 14, 57-64.	2.6	16

ROGER FRETY

#	Article	IF	CITATIONS
19	Influence of the reduction temperature on the properties of silica-supported nickel catalysts. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 3313-3318.	1.7	15
20	Regeneration of a Ptî—, catalyst: influence of heating rate, temperature and time of regeneration. Fuel Processing Technology, 1997, 50, 35-48.	7.2	15
21	Flash pyrolysis of myristic acid adsorbed on supported nickel catalysts for biofuel production. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1875-1885.	3.6	15
22	Influence of Ni/Al ratio on the fast pyrolysis of myristic acid when adsorbed on unsupported mixed oxides derived from layered double hydroxides. Catalysis Today, 2021, 381, 181-191.	4.4	15
23	Thermocatalytic cracking kinetics of myristic acid adsorbed on catalysts with different acidity. Catalysis Today, 2017, 289, 280-288.	4.4	14
24	Modifications of surface properties of nickel/silica catalysts by nitrogen-containing compounds. Applied Catalysis, 1991, 76, 233-254.	0.8	13
25	Preparation of NiAlZr-terephthalate LDHs with high Al and Zr content and their mixed oxides for cyclohexane dehydrogenation. Applied Clay Science, 2018, 166, 137-145.	5.2	13
26	Catalytic cracking of palmitic and oleic acids pre-adsorbed on Î ³ -alumina. Catalysis Today, 2020, 344, 234-239.	4.4	13
27	Perovskite-type catalysts based on nickel applied in the Oxy-CO2 reforming of CH4: Effect of catalyst nature and operative conditions. Catalysis Today, 2021, 369, 19-30.	4.4	13
28	LaNi1-xCoxO3 perovskites for methane combustion by chemical looping. Fuel, 2021, 292, 120187.	6.4	12
29	Hydrotreatment of Irati shale oil: behavior of the aromatic fraction. Industrial & Engineering Chemistry Research, 1991, 30, 2133-2137.	3.7	10
30	Modification of platinum-alumina catalysts. Effect of the addition of lithium to platinum in the dehydrogenation of cyclohexane. Catalysis Letters, 1994, 29, 109-113.	2.6	9
31	Thermal and Catalytic Pyrolysis of Dodecanoic Acid on SAPO-5 and Al-MCM-41 Catalysts. Catalysts, 2019, 9, 418.	3.5	8
32	Influence of sulphiding temperature on Ni-Mo/Aâ,,"2O3 catalyst for hydrodenitrogenation. Catalysis Today, 1989, 5, 443-450.	4.4	7
33	Palladium-supported catalysts in methane combustion: comparison of alumina and zirconia supports. Quimica Nova, 2012, 35, 1118-1122.	0.3	5
34	Flash Pyrolysis of Oleic Acid as a Model Compound Adsorbed on Supported Nickel Catalysts for Biofuel Production. Journal of the Brazilian Chemical Society, 2014, , .	0.6	5
35	Fast Catalytic Pyrolysis of Dilaurin in the Presence of Sodium Carbonate Alone or Combined with Alumina. Catalysts, 2019, 9, 993.	3.5	5
36	Combustion of Methane Using Palladium Catalysts Supported in Alumina or Zirconia. Combustion Science and Technology, 2014, 186, 518-528.	2.3	4

ROGER FRETY

#	Article	IF	CITATIONS
37	Deoxygenation of Oleic Acid Methyl Ester in FCC Process Conditions Over Protonated and Sodium Exchanged Y and ZSM-5 Zeolites. Waste and Biomass Valorization, 2022, 13, 185-194.	3.4	4
38	Thermal and Catalytic Fast Pyrolysis of Oily Extracts of Microalgae: Production of Biokerosene. Journal of the Brazilian Chemical Society, 0, , .	0.6	2
39	Fast Catalytic Pyrolysis of Tetradecanoic Acid: Formation of Ketones as Intermediate Compounds in the Production of Hydrocarbons. Journal of the Brazilian Chemical Society, 0, , .	0.6	ο