Xiao-Peng Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4565129/publications.pdf Version: 2024-02-01

XIAO-PENC YIL

#	Article	IF	CITATIONS
1	Design and Optimization of the Extended True Single-Phase Clock-Based Prescaler. IEEE Transactions on Microwave Theory and Techniques, 2006, 54, 3828-3835.	4.6	77
2	A 1.8-V 2.4/5.15-GHz dual-band LCVCO in 0.18-/spl mu/m CMOS technology. IEEE Microwave and Wireless Components Letters, 2006, 16, 194-196.	3.2	46
3	A 3 mW 54.6 GHz Divide-by-3 Injection Locked Frequency Divider With Resistive Harmonic Enhancement. IEEE Microwave and Wireless Components Letters, 2009, 19, 575-577.	3.2	36
4	3–10ÂGHz selfâ€biased resistiveâ€feedback LNA with inductive source degeneration. Electronics Letters, 2013, 49, 387-388.	1.0	29
5	A Wideband Voltage-Controlled Oscillator With Gain Linearized Varactor Bank. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2014, 4, 905-910.	2.5	29
6	A 1770-\$mu\$ m ² Leakage-Based Digital Temperature Sensor With Supply Sensitivity Suppression in 55-nm CMOS. IEEE Journal of Solid-State Circuits, 2020, 55, 781-793.	5.4	28
7	A CMOS Temperature Sensor With Versatile Readout Scheme and High Accuracy for Multi-Sensor Systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 2018, 65, 3821-3829.	5.4	27
8	A 0.061-mm² 1–11-GHz Noise-Canceling Low-Noise Amplifier Employing Active Feedforward With Simultaneous Current and Noise Reduction. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3093-3106.	4.6	27
9	A Compact 2.1–39 GHz Self-Biased Low-Noise Amplifier in 65 nm CMOS Technology. IEEE Microwave and Wireless Components Letters, 2013, 23, 662-664.	3.2	26
10	Analysis and Design of Ultra-Wideband Low-Noise Amplifier With Input/Output Bandwidth Optimization and Single-Ended/Differential-Input Reconfigurability. IEEE Transactions on Industrial Electronics, 2014, 61, 5672-5680.	7.9	22
11	A Wideband dB-Linear VGA With Temperature Compensation and Active Load. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 3279-3287.	5.4	20
12	A 28 GHz LNA using defected ground structure for 5G application. Microwave and Optical Technology Letters, 2018, 60, 1067-1072.	1.4	18
13	A Four-Element 7.5–9-GHz Phased-Array Receiver With 1–8 Simultaneously Reconfigurable Beams in 65-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 1114-1126.	4.6	17
14	An Accurate dB-Linear CMOS VGA Based on Double Duplicate Biasing Technique. IEEE Solid-State Circuits Letters, 2018, 1, 98-101.	2.0	16
15	An Untrimmed BJT-Based Temperature Sensor With Dynamic Current-Gain Compensation in 55-nm CMOS Process. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1613-1617.	3.0	16
16	A Dynamic-Biased Resistor-Based CMOS Temperature Sensor With a Duty-Cycle-Modulated Output. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1504-1508.	3.0	15
17	A 6.5–12-GHz Balanced Variable-Gain Low-Noise Amplifier With Frequency-Selective Gain Equalization Technique. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 732-744.	4.6	14
18	GHz programmable counter with low power consumption. Electronics Letters, 2003, 39, 1572.	1.0	13

#	Article	IF	CITATIONS
19	A BJT-Based CMOS Temperature Sensor With Duty-Cycle-Modulated Output and ±0.5°C (3σ) Inaccuracy From â~'40 °C to 125 °C. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2780-2784.	3.0	11
20	1â€V 10â€GHz CMOS frequency divider with low power consumption. Electronics Letters, 2004, 40, 467.	1.0	10
21	A 4-Element 7.5-9 GHz Phased Array Receiver with 8 Simultaneously Reconfigurable Beams in 65 nm CMOS Technology. , 2020, , .		10
22	Sub-1 V Low Power Wide Range Injection-Locked Frequency Divider. IEEE Microwave and Wireless Components Letters, 2007, 17, 528-530.	3.2	9
23	Gigahertz range injection locked frequency dividers with band-width enhancement and supply rejection. Electronics Letters, 2008, 44, 999.	1.0	9
24	Sub-mW multi-GHz CMOS dual-modulus prescalers based on programmable injection-locked frequency dividers. , 2008, , .		8
25	Capacitorâ€reused CMOS temperature sensor with dutyâ€cycleâ€modulated output and 0.38°C () inaccuracy. Electronics Letters, 2018, 54, 568-570.	1.0	8
26	An 800-ps Origami True-Time-Delay-Based CMOS Receiver Front End for 6.5–9-GHz Phased Arrays. IEEE Solid-State Circuits Letters, 2020, 3, 382-385.	2.0	8
27	A DC– <i>Ka</i> -Band 7-Bit Passive Attenuator With Capacitive-Compensation-Based Bandwidth Extension Technique in 55-nm CMOS. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3861-3874.	4.6	8
28	Nonreciprocal Time-Varying Transmission Line With Carrier Boosting Technique for Low-Noise RF Front Ends. IEEE Microwave and Wireless Components Letters, 2018, 28, 1011-1013.	3.2	7
29	A DC-32GHz 7-Bit Passive Attenuator with Capacitive Compensation Bandwidth Extension Technique in 55 nm CMOS. , 2020, , .		7
30	A 6.5-12 GHz Balanced Variable Gain Low-Noise Amplifier with Frequency-Selective Non-Foster Gain Equalization Technique. , 2020, , .		7
31	An Energy-Efficient Capacitively Biased Diode-Based Temperature Sensor in 55-nm CMOS. IEEE Solid-State Circuits Letters, 2021, 4, 210-213.	2.0	7
32	Area-efficient CMOS transimpedance amplifier for optical receivers. Analog Integrated Circuits and Signal Processing, 2009, 58, 67-70.	1.4	6
33	A Gm-boosted and current peaking wideband merged LNA and mixer. , 2010, , .		6
34	A 40 GHz 65 nm CMOS Phase-Locked Loop With Optimized Shunt-Peaked Buffer. IEEE Microwave and Wireless Components Letters, 2015, 25, 34-36.	3.2	6
35	A K-Band Low-Power Phase Shifter Based on Injection Locked Oscillator in 0.13 μm CMOS Technology. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38, 1368-1386.	2.2	6
36	A Calibration Scheme for 24–28-GHz Variable-Gain Phase Shifter in 65-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 1996-2000.	3.0	6

#	Article	IF	CITATIONS
37	0.8â€mW 1.1–5.6â€GHz dual-modulus prescaler based on multi-phase quasi-differential locking divider. Electronics Letters, 2010, 46, 1595.	1.0	5
38	A dual-mode mm-wave injection-locked frequency divider with greater than 18% locking range in 65nm CMOS. , 2010, , .		5
39	A novel low complexity soft-decision demapper for QPSK 8PSK demodulation of DVB-S2 systems. , 2011, ,		5
40	A 0.26-pJ·K ² 2400-μm ² Digital Temperature Sensor in 55-nm CMOS. IEEE Solid-State Circuits Letters, 2021, 4, 96-99.	2.0	5
41	0.6mW 6.3ÂGHz 40nm CMOS divideâ€byâ€2/3 prescaler using heterodyne phaseâ€locking technique. Electronic Letters, 2013, 49, 471-472.	⁵ 1.0	4
42	1–2ÂGHz 2ÂmW injectionâ€locked ring oscillator based phase shifter in 0.18 µm CMOS technology. Electronics Letters, 2016, 52, 1858-1860.	1.0	4
43	A wideband BiCMOS variable gain amplifier with novel continuous dB-linear gain control and temperature compensation. Analog Integrated Circuits and Signal Processing, 2017, 90, 499-506.	1.4	4
44	Design and optimization of CMOS glitch-free frequency-to-voltage converter for frequency-locked loop at GHz ranges. Analog Integrated Circuits and Signal Processing, 2019, 98, 627-632.	1.4	4
45	Design of Differential Variable-Gain Transimpedance Amplifier in 0.18 µm SiGe BiCMOS. Electronics (Switzerland), 2020, 9, 1058.	3.1	4
46	Bandwidth-Related Optimization in High-Speed Frequency Dividers using SiGe Technology. Journal of Semiconductor Technology and Science, 2012, 12, 107-116.	0.4	4
47	Ultralow Power E-Band Low-Noise Amplifier With Three-Stacked Current-Sharing Amplification Stages in 28-nm CMOS. IEEE Microwave and Wireless Components Letters, 2022, 32, 732-735.	3.2	4
48	0.9–10GHz low noise amplifier with capacitive cross coupling. , 2010, , .		3
49	Vâ€band injectionâ€locked oscillator with 9ÂGHz locking range. Electronics Letters, 2013, 49, 548-549.	1.0	3
50	Compact 50–62ÂGHz currentâ€reused lowâ€noise amplifier with gateâ€drain transformer feedback. Electronics Letters, 2013, 49, 720-722.	1.0	3
51	6.2ÂGHz 0.5ÂmW twoâ€dimensional oscillator arrayâ€based injectionâ€locked frequency divider in 0.18 μm CMOS. Electronics Letters, 2015, 51, 62-63.	1.0	3
52	2.5ÂmW 2.73ÂGHz nonâ€overlapping multiâ€phase clock generator with dutyâ€cycle correction in 0.13 µm CMOS. Electronics Letters, 2016, 52, 1261-1262.	1.0	3
53	19.1ÂGHz 18ÂmW divideâ€byâ€3 heterodyne injection locking frequency divider in 0.18 µm CMOS technology. Electronics Letters, 2016, 52, 1076-1078.	1.0	3
54	Frequency-Response-Oriented Design and Optimization of N+ Diffusion Guard Ring in Lightly Doped CMOS Substrate. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 481-487.	2.2	3

#	Article	IF	CITATIONS
55	A Reliability-Oriented Startup Analysis of Injection-Locked Frequency Divider Based on Broken Symmetry Theory. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2019, 27, 2954-2958.	3.1	3
56	CMOS EVEN HARMONIC SWITCHING MIXER FOR DIRECT CONVERSION RECEIVERS. Journal of Circuits, Systems and Computers, 2006, 15, 183-196.	1.5	2
57	Noise transfer characteristics and design techniques of a frequency synthesizer. Analog Integrated Circuits and Signal Processing, 2007, 52, 89-97.	1.4	2
58	A 60GHz BiCMOS self-demodulator with injection locked oscillator. , 2011, , .		2
59	An Area-Efficient CRLH (Composite Right/Left-Handed)-TL Approach to the Design of Rotary Traveling-Wave Oscillator. IEEE Microwave and Wireless Components Letters, 2013, 23, 560-562.	3.2	2
60	The investigation of frequency modulation in voltage-controlled oscillator due to low frequency interference from supply voltage. , 2015, , .		2
61	A 11.2ÂmW 48–62ÂGHz Low Noise Amplifier in 65Ânm CMOS Technology. Circuits, Systems, and Signal Processing, 2016, 35, 1531-1543.	2.0	2
62	A Sub-1-GHz Band High-Dynamic-Range Receiver With Integrated Self-Adaptive Multipart AGC Loops. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 3146-3157.	4.6	2
63	Design of Nano-Scale Noise Tolerant CMOS Logic Circuits Based on Probabilistic Markov Random Field Approach. Nanoscience and Nanotechnology Letters, 2012, 4, 914-918.	0.4	2
64	A Continuous K-Band Phase Shifter Based on Injection-Locked Dual Voltage-Controlled Oscillators. IEEE Microwave and Wireless Components Letters, 2022, 32, 1067-1070.	3.2	2
65	A low power CMOS phase-switching prescaler for 1.8–2.4ÂGHz wireless communications. Analog Integrated Circuits and Signal Processing, 2008, 56, 245-249.	1.4	1
66	A group-selected and gain controllable CMOS active mixer for UWB applications. , 2010, , .		1
67	Circuits Design for Contactless Testing of Nano-Scale CMOS Devices and Circuits. Nanoscience and Nanotechnology Letters, 2012, 4, 930-935.	0.4	1
68	A 1-mW K-band gate AC-coupled VCO with 0.25ÂV supply voltage. Analog Integrated Circuits and Signal Processing, 2013, 77, 87-91.	1.4	1
69	A New On-chip Signal Generator for Charge-Based Capacitance Measurement Circuit. Journal of Electronic Testing: Theory and Applications (JETTA), 2015, 31, 329-333.	1.2	1
70	P-minus substrate guard ring modeling for the purpose of noise isolation in CMOS substrates. , 2015, ,		1
71	A 3 mW 54 GHz 0.18 μ m BiCMOS voltage controlled oscillator with supply injection locking. Microwave and Optical Technology Letters, 2015, 57, 1912-1914.	1.4	1
72	Modeling and Optimization of Substrate Electromagnetic Coupling and Isolation in Modern Lightly Doped CMOS Substrate. IEEE Transactions on Electromagnetic Compatibility, 2017, 59, 662-669.	2.2	1

#	Article	IF	CITATIONS
73	The Investigation and Optimisation of Phase-Induced Amplitude Attenuation in the Injection-Locked Ring Oscillators-Based Receiver. Circuits, Systems, and Signal Processing, 2017, 36, 1818-1835.	2.0	1
74	A 2.4â€⁻mW 2.5â€⁻GHz multi-phase clock generator with duty cycle imbalance correction in 0.13 µm CMOS. The Integration VLSI Journal, 2018, 63, 87-92.	2.1	1
75	A 1-V Diode-Based Temperature Sensor with a Resolution FoM of 3.1pJ•K2 in 55nm CMOS. , 2021, , .		1
76	A Highly-integrated Non-magnetic Passive Circulator Based on Rotary Traveling-wave Oscillator and Spatio-temporal Conductivity Modulation in 130 nm CMOS. , 2021, , .		1
77	Considerations and Optimization of Measurement Accuracy of Capacitance in Nano-Scale CMOS Technology. Nanoscience and Nanotechnology Letters, 2012, 4, 924-929.	0.4	1
78	Robustnessâ€oriented Pâ€band phased array radar frontâ€end with high phase and gain resolution in 0.18 BiCMOS. IET Microwaves, Antennas and Propagation, 2020, 14, 960-966.	1.4	1
79	A Low Power Sub-GHz PLL with Optimized LO Distribution Circuit. , 2020, , .		1
80	A Sub-GHz CMOS Low-IF Receiver for loT Applications. , 2020, , .		1
81	10 Gb/s Linear Full-Rate CMOS Phase Detector for Clock Data Recovery Circuit. Analog Integrated Circuits and Signal Processing, 2005, 45, 191-196.	1.4	Ο
82	Odd phase switching prescaler based on Injection Locked Frequency Divider. IEEE MTT-S International Microwave Symposium Digest IEEE MTT-S International Microwave Symposium, 2007, , .	0.0	0
83	Low power high data rate GHz range receiver in 40nm CMOS technology. , 2011, , .		Ο
84	Design and Optimization of a Milli-Meter Wave Amplifier Using Nano-Scale CMOS Devices. Nanoscience and Nanotechnology Letters, 2014, 6, 805-811.	0.4	0
85	The investigation of the substrates noise suppression using guard rings in CMOS technology. , 2016, , .		0
86	Noise analysis in injection locked frequency divider using frequency modulation. , 2016, , .		0
87	A Bridged Contactless Measurement Technique for LC Tank Based Voltage-Controlled Oscillator. Journal of Electronic Testing: Theory and Applications (JETTA), 2017, 33, 261-266.	1.2	0
88	Design of the Addressable Test Structure for \${S}\$ -Parameter-Based RF Device Characterization. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 2122-2131.	4.6	0
89	A Compact Gate-Width Scalable Model for Dual-Gate GaAs pHEMT. IEEE Microwave and Wireless Components Letters, 2022, 32, 399-402.	3.2	0
90	A K-Band CMOS Standing Wave Oscillator Using Digital-Controlled Artificial Dielectric Differential Transmission Lines. IEEE Microwave and Wireless Components Letters, 2022, 32, 1195-1198.	3.2	0