Svenja Heesch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4564849/publications.pdf

Version: 2024-02-01

		471477	414395
32	1,850	17	32
papers	citations	h-index	g-index
33	33	33	2618
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature, 2010, 465, 617-621.	27.8	774
2	Amino acid composition, protein content, and nitrogen-to-protein conversion factors of 21 seaweed species from Norwegian waters. Journal of Applied Phycology, 2017, 29, 1001-1009.	2.8	128
3	Chemical characterization of 21 species of marine macroalgae common in Norwegian waters: benefits of and limitations to their potential use in food and feed. Journal of the Science of Food and Agriculture, 2018, 98, 2035-2042.	3.5	98
4	<i>Ulva</i> , <i>Umbraulva</i> and <i>Gemina</i> : genetic survey of New Zealand taxa reveals diversity and introduced species. European Journal of Phycology, 2009, 44, 143-154.	2.0	83
5	Saturating light and not increased carbon dioxide under ocean acidification drives photosynthesis and growth in <i>Ulva rigida</i> (Chlorophyta). Ecology and Evolution, 2015, 5, 874-888.	1.9	80
6	In-depth metabolic profiling of marine macroalgae confirms strong biochemical differences between brown, red and green algae. Algal Research, 2017, 26, 240-249.	4.6	67
7	Multiple gene movements into and out of haploid sex chromosomes. Genome Biology, 2017, 18, 104.	8.8	63
8	Sequencing type material resolves the identity and distribution of the generitype <i>Lithophyllum incrustans (i), and related European species <i>L.Âhibernicum (i) and <i>L.Âbathyporum (i) (Corallinales, Rhodophyta). Journal of Phycology, 2015, 51, 791-807.</i></i></i>	2.3	62
9	A sequenceâ€tagged genetic map for the brown alga <i>Ectocarpus siliculosus ⟨i⟩ provides largeâ€scale assembly of the genome sequence. New Phytologist, 2010, 188, 42-51.</i>	7.3	59
10	Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. Journal of Phycology, 2017, 53, 731-745.	2.3	54
11	Assessment and Characterisation of Ireland's Green Tides (Ulva Species). PLoS ONE, 2017, 12, e0169049.	2.5	51
12	Evolution of life cycles and reproductive traits: Insights from the brown algae. Journal of Evolutionary Biology, 2021, 34, 992-1009.	1.7	35
13	Genetic diversity and biogeography of native and introduced populations of <i>Ulva pertusa</i> (<scp>U</scp> lvales, <scp>C</scp> hlorophyta). Phycological Research, 2016, 64, 102-109.	1.6	26
14	Spatial and temporal variability of biomass and composition of green tides in Ireland. Harmful Algae, 2019, 81, 94-105.	4.8	25
15	Prasiolales (Trebouxiophyceae, Chlorophyta) of the Svalbard Archipelago: diversity, biogeography and description of the new genera <i>Prasionella</i> PrasionemaPhycology, 2016, 51, 171-187.	2.0	23
16	The CCAP KnowledgeBase: linking protistan and cyanobacterial biological resources with taxonomic and molecular data. Systematics and Biodiversity, 2013, 11, 407-413.	1.2	20
17	The Ectocarpus Genome and Brown Algal Genomics. Advances in Botanical Research, 2012, 64, 141-184.	1.1	18
18	Scanning electron microscopy observation of host entry by two brown algae endophytic in Laminaria saccharina (Laminariales, Phaeophyceae). Phycological Research, 1999, 47, 1-5.	1.6	18

#	Article	IF	CITATIONS
19	Diversity, biogeography and host specificity of kelp endophytes with a focus on the genera <i>Laminarionema</i> and <i>Laminariocolax</i> (Ectocarpales, Phaeophyceae). European Journal of Phycology, 2019, 54, 39-51.	2.0	17
20	Intracellular eukaryotic pathogens in brown macroalgae in the Eastern Mediterranean, including LSU rRNA data for the oomycete Eurychasma dicksoniiÂ. Diseases of Aquatic Organisms, 2013, 104, 1-11.	1.0	17
21	Chemical profiling of Ulva species for food applications: What is in a name?. Food Chemistry, 2021, 361, 130084.	8.2	16
22	Affiliation of the parasite <i>Herpodiscus durvillaeae </i> (Phaeophyceae) with the Sphacelariales based on DNA sequence comparisons and morphological observations. European Journal of Phycology, 2008, 43, 283-295.	2.0	15
23	The arrival of a red invasive seaweed to a nutrient over-enriched estuary increases the spatial extent of macroalgal blooms. Marine Environmental Research, 2020, 158, 104944.	2.5	15
24	Latitudinal trends in stable isotope signatures and carbon-concentrating mechanisms of northeast Atlantic rhodoliths. Biogeosciences, 2018, 15, 6139-6149.	3.3	14
25	Marine Prasiolales (Trebouxiophyceae, Chlorophyta) from New Zealand and the Balleny Islands, with descriptions of <i>Prasiola novaezelandiae </i> sp. nov. and <i>Rosenvingiella australis </i> sp. nov Phycologia, 2012, 51, 217-227.	1.4	13
26	Red algal extracts from Plocamium lyngbyanum and Ceramium secundatum stimulate osteogenic activities in vitro and bone growth in zebrafish larvae. Scientific Reports, 2018, 8, 7725.	3. 3	12
27	Screening for osteogenic activity in extracts from Irish marine organisms: The potential of Ceramium pallidum. PLoS ONE, 2018, 13, e0207303.	2.5	11
28	Development and Validation of an HPLC Method for the Quantitative Analysis of Bromophenolic Compounds in the Red Alga Vertebrata lanosa. Marine Drugs, 2019, 17, 675.	4.6	10
29	Unravelling the complexity of salt marsh â€~ <i>Fucus cottonii</i> ' forms (Phaeophyceae, Fucales). European Journal of Phycology, 2017, 52, 360-370.	2.0	9
30	Looks can be deceiving: contrasting temperature characteristics of two morphologically similar kelp species co-occurring in the Arctic. Botanica Marina, 2021, 64, 163-175.	1.2	9
31	Molecular phylogeny and taxonomic reassessment of the genus <i>Cladostephus</i> (Sphacelariales,) Tj ETQq1	l 0.78431 2.0	4 rgBT /Over
32	Providing a phylogenetic framework for trait-based analyses in brown algae: Phylogenomic tree inferred from 32 nuclear protein-coding sequences. Molecular Phylogenetics and Evolution, 2022, 168, 107408.	2.7	2