Gonzalo Millan-Zambrano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4564634/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Histone post-translational modifications — cause and consequence of genome function. Nature Reviews Genetics, 2022, 23, 563-580.	7.7	253
2	Methylation of histone H3 at lysine 37 by Set1 and Set2 prevents spurious DNA replication. Molecular Cell, 2021, 81, 2793-2807.e8.	4.5	18
3	Genome architecture and stability in the Saccharomyces cerevisiae knockout collection. Nature, 2019, 573, 416-420.	13.7	72
4	Phosphorylation of Histone H4T80 Triggers DNA Damage Checkpoint Recovery. Molecular Cell, 2018, 72, 625-635.e4.	4.5	21
5	RNA Binding by Histone Methyltransferases Set1 and Set2. Molecular and Cellular Biology, 2017, 37, .	1.1	31
6	Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control. Nature, 2017, 552, 126-131.	13.7	833
7	The ribosome assembly gene network is controlled by the feedback regulation of transcription elongation. Nucleic Acids Research, 2017, 45, 9302-9318.	6.5	13
8	Subtracting the sequence bias from partially digested MNase-seq data reveals a general contribution of TFIIS to nucleosome positioning. Epigenetics and Chromatin, 2017, 10, 58.	1.8	17
9	H3K4 monomethylation dictates nucleosome dynamics and chromatin remodeling at stress-responsive genes. Nucleic Acids Research, 2015, 43, 4937-4949.	6.5	34
10	Cytoplasmic 5â€2-3â€2 exonuclease Xrn1p is also a genome-wide transcription factor in yeast. Frontiers in Genetics, 2014, 5, 1.	1.1	427
11	Nuclear functions of prefoldin. Open Biology, 2014, 4, 140085.	1.5	103
12	Gene Expression Is Circular: Factors for mRNA Degradation Also Foster mRNA Synthesis. Cell, 2013, 153, 1000-1011.	13.5	311
13	The Prefoldin Complex Regulates Chromatin Dynamics during Transcription Elongation. PLoS Genetics, 2013, 9, e1003776.	1.5	45
14	One step back before moving forward: Regulation of transcription elongation by arrest and backtracking. FEBS Letters, 2012, 586, 2820-2825.	1.3	25
15	A Matter of Packaging: Influence of Nucleosome Positioning on Heterologous Gene Expression. Methods in Molecular Biology, 2012, 824, 51-64.	0.4	1
16	Chromatin Reassembly Factors Are Involved in Transcriptional Interference Promoting HIV Latency. Journal of Virology, 2011, 85, 3187-3202.	1.5	71