Ivanovich Estrada-Guel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4564238/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying. Journal of Alloys and Compounds, 2014, 615, S578-S582.	2.8	273
2	Microstructural and mechanical characterization of Al–MWCNT composites produced by mechanical milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 502, 159-163.	2.6	203
3	Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes. Journal of Alloys and Compounds, 2008, 450, 323-326.	2.8	146
4	Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying. Materials Characterization, 2013, 75, 13-19.	1.9	94
5	Characterization of Al2024-CNTs composites produced by mechanical alloying. Powder Technology, 2011, 212, 390-396.	2.1	66
6	Graphite nanoparticle dispersion in 7075 aluminum alloy by means of mechanical alloying. Journal of Alloys and Compounds, 2009, 483, 173-177.	2.8	55
7	Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion. Journal of Alloys and Compounds, 2010, 495, 399-402.	2.8	55
8	Structural characterization of aluminium alloy 7075–graphite composites fabricated by mechanical alloying and hot extrusion. Materials & Design, 2014, 53, 1104-1111.	5.1	55
9	Dispersion of silicon carbide nanoparticles in a AA2024 aluminum alloy by a high-energy ball mill. Journal of Alloys and Compounds, 2014, 586, S68-S72.	2.8	43
10	Influence of plastic deformation and Cu/Mg ratio on the strengthening mechanisms and precipitation behavior of AA2024 aluminum alloys. Journal of Materials Research and Technology, 2019, 8, 5471-5475.	2.6	39
11	Morphed graphene nanostructures: Experimental evidence for existence. Carbon, 2016, 102, 288-296.	5.4	37
12	Study of Al composites prepared by high-energy ball milling; Effect of processing conditions. Journal of Alloys and Compounds, 2015, 643, S172-S177.	2.8	36
13	Wear behavior in Al2024–CNTs composites synthesized by mechanical alloying. Wear, 2012, 292-293, 169-175.	1.5	33
14	HRTEM low dose: the unfold of the morphed graphene, from amorphous carbon to morphed graphenes. Advanced Structural and Chemical Imaging, 2016, 2, 10.	4.0	33
15	Aluminum–graphite composite produced by mechanical milling and hot extrusion. Journal of Alloys and Compounds, 2007, 434-435, 518-521.	2.8	32
16	Synthesis of aluminum alloy 7075-graphite composites by milling processes and hot extrusion. Journal of Alloys and Compounds, 2011, 509, S284-S289.	2.8	29
17	AA2024–CNTs composites by milling process after T6-temper condition. Journal of Alloys and Compounds, 2012, 536, S17-S20.	2.8	29
18	Microstructural and mechanical characterization in 7075 aluminum alloy reinforced by silver nanoparticles dispersion, Journal of Alloys and Compounds, 2010, 495, 394-398.	2.8	24

IVANOVICH ESTRADA-GUEL

#	Article	IF	CITATIONS
19	Effect of Nickel addition and solution treatment time on microstructure and hardness of Al-Si-Cu aged alloys. Materials Characterization, 2016, 120, 168-174.	1.9	24
20	Mechanical and microstructural characterization of dispersion strengthened Al–C system nanocomposites. Journal of Alloys and Compounds, 2010, 489, 626-630.	2.8	19
21	Microstructure of NiCoAlFeCuCr multi-component systems synthesized by mechanical alloying. Journal of Alloys and Compounds, 2011, 509, S279-S283.	2.8	17
22	Pelagic Sargassum spp. capture CO2 and produce calcite. Environmental Science and Pollution Research, 2020, 27, 25794-25800.	2.7	17
23	B4C Particles Reinforced Al2024 Composites via Mechanical Milling. Metals, 2018, 8, 647.	1.0	16
24	Effect of Cr, Mo and Ti on the microstructure and Vickers hardness of multi-component systems. Journal of Alloys and Compounds, 2014, 615, S638-S644.	2.8	15
25	Effect of metallic addition on mechanical properties in an aluminum–graphite composite synthesized by means of mechanical milling. Journal of Alloys and Compounds, 2010, 495, 403-407.	2.8	14
26	Electrochemical performance of hydrogen evolution reaction of Ni–Mo electrodes obtained by mechanical alloying. International Journal of Hydrogen Energy, 2004, 29, 1141-1141.	3.8	13
27	Mechanical and microstructural characterization of aluminum reinforced with carbon-coated silver nanoparticles. Journal of Alloys and Compounds, 2007, 438, 195-201.	2.8	13
28	Characterization of Al2O3NP–Al2024 and AgCNP–Al2024 composites prepared by mechanical processing in a high energy ball mill. Journal of Alloys and Compounds, 2012, 536, S26-S30.	2.8	12
29	Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion. Materials Characterization, 2012, 63, 39-46.	1.9	12
30	Microstructural and magnetic behavior of an equiatomic NiCoAlFe alloy prepared by mechanical alloying. Journal of Alloys and Compounds, 2014, 615, S317-S323.	2.8	12
31	Comparative study of synthesis of AA 7075–ZrO2 metal matrix composite by different mills. Journal of Alloys and Compounds, 2015, 643, S107-S113.	2.8	12
32	Mechanical and Microstructural Response of an Aluminum Nanocomposite Reinforced with Carbon-Based Particles. Materials Research, 2016, 19, 13-19.	0.6	12
33	Evaluation of hardness and precipitation in Zn-modified Al2024 alloy after plastic deformation and heat treatments. Journal of Alloys and Compounds, 2017, 705, 1-8.	2.8	12
34	Enhanced elastic behavior of all-carbon composites reinforced by in-situ synthesized morphed graphene. Carbon, 2019, 153, 657-662.	5.4	12
35	TEM characterization of Al–C–Cu–Al2O3 composites produced by mechanical milling. Journal of Alloys and Compounds, 2007, 434-435, 514-517.	2.8	11
36	Effect of process parameters on micro and macro-properties of an Al-based nanocomposite prepared by means of mechanical milling. Journal of Alloys and Compounds, 2014, 586, S85-S89.	2.8	11

Ivanovich Estrada-Guel

#	Article	IF	CITATIONS
37	Carbon-coated silver nanoparticles dispersed in a 2024 aluminum alloy produced by mechanical milling. Journal of Alloys and Compounds, 2009, 483, 355-358.	2.8	10
38	Microstructural evolution of mechanically alloyed Ni-based alloys under high temperature oxidation. Powder Technology, 2015, 281, 57-64.	2.1	9
39	Synthesis and characterization of Al-Cu-Mg system reinforced with tungsten carbide through powder metallurgy. Materials Today Communications, 2020, 22, 100758.	0.9	9
40	The influence of chelating agents on cerium oxide decorated on graphite synthesized by the hydrothermal route. Ceramics International, 2020, 46, 18791-18799.	2.3	9
41	Effect of Fe impurities and pure Cr additions on microstructure of nanostructured WC-10Co alloy sintered by HIP. Journal of Alloys and Compounds, 2019, 800, 462-467.	2.8	8
42	Synthesis and Characterization of Zn-Ni _{<i>x</i>} Advanced Alloys Prepared by Mechanical Milling and Sintering at Solid-State Process. Advances in Materials Science and Engineering, 2017, 2017, 1-12.	1.0	7
43	Evaluation of high-frequency induction heat sintering and conventional sintering in AlxCoCrFeMnNi high-entropy alloys. Journal of Alloys and Compounds, 2022, 910, 164780.	2.8	7
44	Exfoliated graphite preparation based on an eco-friendly mechanochemical route. Journal of Environmental Chemical Engineering, 2020, 8, 104370.	3.3	6
45	Effect of Ni additions and hot deformation on precipitation behavior and hardness in Al–Si–Mg aged alloys. Journal of Alloys and Compounds, 2020, 828, 154429.	2.8	6
46	Microstructural and Mechanical Characterization of Aluminum-Graphite Composites. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 133-138.	0.1	5
47	Novel Composites Aluminum-Multi-Walled Carbon Nano-Tubes. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 77-80.	0.1	5
48	Effect of carbon nanoparticles addition on the mechanical properties of an aluminum composite prepared by mechanical milling and leaching process. Journal of Alloys and Compounds, 2012, 536, S175-S179.	2.8	5
49	Microstructural Changes and Mechanical Response of Aluminum-Based Composites Prepared with Dispersed CeO ₂ Nanoparticles. Advances in Materials Science and Engineering, 2019, 2019, 1-8.	1.0	5
50	Aluminum-lithium alloy prepared by a solid-state route applying an alternative fast sintering route based on induction heating. Materials Letters, 2020, 263, 127178.	1.3	5
51	Atmospheric and Milling-Device Effects on the Activation Energy for Crystallization of a Partially Amorphized Ni-Mo Alloy. Materials Science Forum, 2002, 386-388, 135-140.	0.3	4
52	In-Situ Transformation of Amorphous Soot into Carbon-Nanostructures by High-Energy Ball Milling. Microscopy and Microanalysis, 2016, 22, 1902-1903.	0.2	4
53	Effect of Trace Ce/La Addition on the Microstructure and Microhardness of Nanostructured Nickel-based Superalloy Inconel 718. Microscopy and Microanalysis, 2019, 25, 2178-2179.	0.2	4
54	Increase of the mechanical response of pure aluminum by grain refinement retained with an alternative rapid sintering route. Journal of Materials Research, 2021, 36, 1328-1340.	1.2	4

#	Article	IF	CITATIONS
55	Synthesis and Mechanical Characterization of Aluminum Based Composites Prepared by Powder Metallurgy. Materials Research Society Symposia Proceedings, 2009, 1243, 1.	0.1	3
56	Mechanical Response and Microstructure of Al-SiO ₂ Composites Prepared by Means of a Solid-State Route. Materials Science Forum, 2014, 793, 17-22.	0.3	3
57	Effect of silver nanoparticles on the microstructure and mechanical properties of alumina ceramics. Canadian Metallurgical Quarterly, 2017, 56, 332-339.	0.4	3
58	AFM Analyses of 3XXX Series Al Alloy Reinforced with Different Hard Nanoparticles Produced in Liquid State. Materials, 2020, 13, 272.	1.3	3
59	Dispersion of graphite, Ceria, and nanohybrid Ceria-graphite in the 6063 aluminum alloy through powder metallurgy. Materials Chemistry and Physics, 2022, 281, 125953.	2.0	3
60	Crystallization of Partially Amorphized Ni-Mo Alloy. Microscopy and Microanalysis, 2003, 9, 616-617.	0.2	2
61	SEM Characterization Ni-Mo Catalyst Synthesized by Mechanical Alloying. Microscopy and Microanalysis, 2003, 9, 612-613.	0.2	2
62	TEM Characterization on the Nanocomposite Al 7075 and Silver Nanoparticles Synthesized by Powder Metallurgy. Materials Science Forum, 0, 644, 9-12.	0.3	2
63	A Green Method for Graphite Exfoliation Using a Mechanochemical Route. , 2015, , 179-188.		2
64	Synthesis and Characterization of Carbon Nanotubes Via Spray Pyrolysis Method. Microscopy and Microanalysis, 2017, 23, 1928-1929.	0.2	2
65	Microstructural and Mechanical Behavior in the Al2024 Alloy Modified With Addition of CeO2. Microscopy and Microanalysis, 2017, 23, 1650-1651.	0.2	2
66	Aluminum Sintering in Air Atmosphere Using High Frequency Induction Heating. Microscopy and Microanalysis, 2017, 23, 1950-1951.	0.2	2
67	Microstructural, Structural and Mechanical Behavior of WC-Based Hardmetals Bonded with High and Medium Entropy Alloys Microscopy and Microanalysis, 2019, 25, 1794-1795.	0.2	2
68	Influence of HIP Sintering and Ce/La Additions on the Microstructure and Hardness on Inconel 718 Nickel-based Superalloy. Microscopy and Microanalysis, 2020, 26, 2914-2915.	0.2	2
69	Turbostratic Carbon/Graphene Prepared via the Dry Ice in Flames Method and Its Purification Using Different Routes: A Comparative Study. Materials, 2022, 15, 2501.	1.3	2
70	Ni-Mo Catalyst Synthesized by Mechanical Alloying. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 745-750.	0.1	1
71	Reinforced Aluminum by Graphite Dispersion. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 501-506.	0.1	1
72	Microstructural Characterization of Aluminum - Silver Nanoparticles Composites Produced by Mechanical Milling. Microscopy and Microanalysis, 2008, 14, 368-369.	0.2	1

IVANOVICH ESTRADA-GUEL

#	Article	IF	CITATIONS
73	Dispersion of CNTs in Aluminum 2024 Alloy by Milling Process. Materials Science Forum, 0, 691, 27-31.	0.3	1
74	Mechanical Study on Al-based Composites Synthesized by Mechanical Milling and Hot Extrusion. Materials Science Forum, 0, 691, 37-43.	0.3	1
75	An aluminum-Silica nanocomposite prepared by means of mechanical milling. Microscopy and Microanalysis, 2012, 18, 1656-1657.	0.2	1
76	NiCoAlFeCrTi High Entropy Alloys Produced In Solid State Microscopy and Microanalysis, 2012, 18, 1920-1921.	0.2	1
77	Effect of High-Energy Ball Milling on the Microstructure of Natural Graphite. Microscopy and Microanalysis, 2013, 19, 1598-1599.	0.2	1
78	Effect of Solubilization Temperature, Zn Addition and Thermo-Mechanical Treatments in the Microstructure of the Aluminum 2024 Alloy. Microscopy and Microanalysis, 2014, 20, 1478-1479.	0.2	1
79	A Green Method for Graphite Exfoliation, Effect of Milling Intensity Microscopy and Microanalysis, 2014, 20, 1780-1781.	0.2	1
80	An Innovative Process for Synthesis of Carbon-Base Nanostructured Materials Using a Solid-State Route. Materials Research Society Symposia Proceedings, 2015, 1765, 29-35.	0.1	1
81	A Green Method for Graphite Exfoliation Using High-Energy Ball Milling. Microscopy and Microanalysis, 2015, 21, 615-616.	0.2	1
82	Effect of Ti and W Additions on the Microstructural Behavior of a Nanocrystalline CoCrFeMoNi High Entropy Alloy. Microscopy and Microanalysis, 2017, 23, 774-775.	0.2	1
83	Aluminum Composites Reinforced With Graphite: a Densification and Mechanical Response Study. MRS Advances, 2017, 2, 2847-2855.	0.5	1
84	An Analysis of Nanoindentation in a NiCoAlFeMo High Entropy Alloy Produced by Sintering. Microscopy and Microanalysis, 2017, 23, 772-773.	0.2	1
85	Effect of Multiwall Carbon Nanotubes (MWCNs) Reinforcement on the Mechanical Behavior of Synthesis 7075 Aluminum Alloy Composites by Mechanical Milling. Microscopy and Microanalysis, 2017, 23, 1930-1931.	0.2	1
86	Effect of CeO2 nanoparticles on Microstructure and Hardness of A6063 Aluminum Alloy Microscopy and Microanalysis, 2018, 24, 2276-2277.	0.2	1
87	Al-Graphite Composites Prepared by Powder Metallurgy Applying an Innovative Sintering Route, Which Avoids Carbides Formation. Microscopy and Microanalysis, 2018, 24, 2286-2287.	0.2	1
88	Microstructural Study and Antibacterial Response of an AlCoCrCuFeMoNi High-Entropy Alloy. Microscopy and Microanalysis, 2019, 25, 2646-2647.	0.2	1
89	Synthesis and Analysis Microstructural of CeO ₂ Nanoparticles Using Chelating Agents. Microscopy and Microanalysis, 2019, 25, 1790-1791.	0.2	1
90	Graphite Oxide Preparation Following a Mechanochemical Green Route and Spontaneous Air Oxidation. Microscopy and Microanalysis, 2020, 26, 2648-2649.	0.2	1

Ivanovich Estrada-Guel

#	Article	IF	CITATIONS
91	High-entropy Alloys Fabricated Through Powder Metallurgy for Low-temperature Applications. Microscopy and Microanalysis, 2020, 26, 2938-2939.	0.2	1
92	Electrochemical Evaluation of Ni-Mo Electrodes Obtained by Mechanical Alloying. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 701-706.	0.1	0
93	Thermal Analysis of Mechanically Alloyed Ni-Mo Powders. Journal of Metastable and Nanocrystalline Materials, 2003, 15-16, 507-512.	0.1	Ο
94	TEM and Mechanical Characterization in Al-C Composite. Microscopy and Microanalysis, 2003, 9, 614-615.	0.2	0
95	EELS Characterization of Ni-Mo Catalyst Synthesized by Mechanical Alloying. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 599-604.	0.1	Ο
96	Microstructural Characterization on Ni-Mo Catalyst Synthesized by Mechanical Alloying. Journal of Metastable and Nanocrystalline Materials, 2004, 20-21, 269-274.	0.1	0
97	TEM Characterization in Al-C-Al2O3 Composites Produced by MA Microscopy and Microanalysis, 2004, 10, 678-679.	0.2	0
98	SEM Characterization in Al-C-Al2O3 Composites Produced by MA Microscopy and Microanalysis, 2004, 10, 680-681.	0.2	0
99	SEM Characterization in Al-C-Al2O3 Composites Produced by Stir Casting Microscopy and Microanalysis, 2004, 10, 682-683.	0.2	0
100	EELS Characterization in AL-C-Al2O3 Composites Produced by MA. Microscopy and Microanalysis, 2004, 10, 684-685.	0.2	0
101	Microstructural Characterization in Al-C-Al ₂ O ₃ Composites Produced by Mechanical Milling. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 165-168.	0.1	0
102	Lead-Free Solder System Bi5-Ag3-Cu0.5-Sn Prepared by Mechanical Alloying. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 451-454.	0.1	0
103	Characterization of Al-Based Composites Produced by Mechanical Milling Using Electron Energy Loss Spectroscopy. Journal of Metastable and Nanocrystalline Materials, 2005, 24-25, 169-172.	0.1	0
104	Microstructural Characterization in Aluminum-Graphite Composites Produced by Mechanical Milling and Hot Extrusion. Microscopy and Microanalysis, 2006, 12, 1056-1057.	0.2	0
105	Microstructural and Mechanical Characterization of Aluminum Reinforced with Silver Nanoparticles. Microscopy and Microanalysis, 2006, 12, 614-615.	0.2	0
106	Effect of Metallized Graphite Addition and Milling Intensity on Final Powder Morphology in an Aluminum 7075 Composite. Microscopy and Microanalysis, 2008, 14, 566-567.	0.2	0
107	Influence of Reinforcement Particles Addition and Processing Intensity on the Mechanical Properties in an Al-7075 Composite Produced by Mechanical Milling. Microscopy and Microanalysis, 2008, 14, 562-563.	0.2	0
108	Al-MWCNT Composites Obtained by Mechanical Milling. Microscopy and Microanalysis, 2008, 14, 576-577.	0.2	0

IVANOVICH ESTRADA-GUEL

#	Article	IF	CITATIONS
109	Microstructural and Hot Extrusion Evaluation of Aluminum Alloy Al2024 During Mechanical Milling,. Microscopy and Microanalysis, 2008, 14, 564-565.	0.2	0
110	Microstructural Characterization of Multi-Component Systems Produced by Mechanical Alloying. Materials Research Society Symposia Proceedings, 2009, 1243, 1.	0.1	0
111	Metal-Graphite Couples Synthesized by Means of Mechanical Milling. Materials Research Society Symposia Proceedings, 2010, 1276, 1.	0.1	0
112	Strengthening phases in the production of Al2024-CNTs composites by a milling process. Materials Research Society Symposia Proceedings, 2010, 1276, 1.	0.1	0
113	Study of Al-Graphite composites prepared by mechanical processing in a high-energy ball mill. Microscopy and Microanalysis, 2012, 18, 1566-1567.	0.2	0
114	Characterization of a Ni Base Alloy Obtained by Mechanical Alloying Followed by SPS. Microscopy and Microanalysis, 2012, 18, 1940-1941.	0.2	0
115	A comparative study of an Alumina-MWCNTs nanocomposite synthesized by two different routes. Microscopy and Microanalysis, 2012, 18, 1574-1575.	0.2	0
116	Characterization of a Ni-Co-Cr-Al bond coat produced by mechanical alloying. Microscopy and Microanalysis, 2012, 18, 1684-1685.	0.2	0
117	Nanostructured composites obtained by mechanical alloying of nanoparticles reinforced and 2024 aluminum alloy. Microscopy and Microanalysis, 2012, 18, 1936-1937.	0.2	0
118	Equiatomic NiCoAlFeMoTiCrx (x= 0,1) High Entropy Alloys Produced by Mechanical Alloying. Microscopy and Microanalysis, 2014, 20, 882-883.	0.2	0
119	Study of Coarsening in Î ^{3'} Precipitates by Diffusion Couples. Microscopy and Microanalysis, 2014, 20, 886-887.	0.2	0
120	Al4C3/Ag Formation in an Aluminum Composite Produced by High-Energy Ball Milling Microscopy and Microanalysis, 2014, 20, 1782-1783.	0.2	0
121	Compression Properties of an Al2024 Composite Reinforced with SiC Nanoparticles. Microscopy and Microanalysis, 2014, 20, 1966-1967.	0.2	0
122	Graphene Related Nanostructures Synthesized by High-Energy Ball Milling. Microscopy and Microanalysis, 2015, 21, 979-980.	0.2	0
123	Study of Coarsening in $\hat{1}^3 \hat{\epsilon}^2$ Precipitates by Diffusion Couples. Metallography, Microstructure, and Analysis, 2015, 4, 467-474.	0.5	0
124	Effect on Microstructure and Microhardness of Equiatomic NiCoAlFeMoTi High Entropy Alloys Produced by Mechanical Alloying and Subsequent Arc-Melting. Microscopy and Microanalysis, 2016, 22, 1980-1981.	0.2	0
125	An Electron Microscopy Study on Morphology and Microstructure of a NiCoAlFeMoTiCr High-entropy Alloy synthesized by Arc-melting. Microscopy and Microanalysis, 2016, 22, 1978-1979.	0.2	0
126	Comparison of Microstructure and Hardness of an Equiatomic NiCo Alloy Produced by Two Routes Microscopy and Microanalysis, 2016, 22, 1994-1995.	0.2	0

#	Article	IF	CITATIONS
127	Microstructural Characterization of a Metal Matrix Composite CoCrFeMnMoNi-ZnO Nanoparticles. Microscopy and Microanalysis, 2016, 22, 1996-1997.	0.2	0
128	Effect of Ni Addition on Microstructure and Hardness of A356 Alloy after Hot Plastic Deformation. Microscopy and Microanalysis, 2017, 23, 582-583.	0.2	0
129	Microstructure and Hardness of Al2024-025 Mg Alloy after Plastic Deformation. Microscopy and Microanalysis, 2017, 23, 398-399.	0.2	0
130	Mechanical Behavior on Microstructure of B4C Particles Reinforced 2024 Aluminum Matrix Composite Obtained by Mechanical Milling. Microscopy and Microanalysis, 2017, 23, 776-777.	0.2	0
131	Microstructural Changes in Aluminum Mechanically Milled Sintered by Conventional Method and Induction. Microscopy and Microanalysis, 2017, 23, 1946-1947.	0.2	0
132	Morphological Evolution and Coalescence of γ' Precipitates. Microscopy and Microanalysis, 2017, 23, 2242-2243.	0.2	0
133	Influence of Salt Fluxes on Recycled Al Nanocomposites Reinforced with TiO2 Nanoparticles Produced in Liquid State. Microscopy and Microanalysis, 2017, 23, 790-791.	0.2	0
134	An Eco Friendly Mechanochemical Alternative Route for Exfoliated Graphite preparation. Microscopy and Microanalysis, 2018, 24, 1634-1635.	0.2	0
135	The Effect of Process Control Agent on the Oxidation of Nanocrystalline Mechanically Alloyed AlCoCrFeMnNi Powders. Microscopy and Microanalysis, 2018, 24, 2268-2269.	0.2	0
136	Microstructure and Hardness of 2024 Alloy Subject to Hot-Extrusion, Cold-Rolling and Heat-Treatments. Microscopy and Microanalysis, 2018, 24, 2274-2275.	0.2	0
137	Effect of Transition Element Addition on the Microstructure and Microhardness of (Al-Si-Cu) Aged Alloys. Microscopy and Microanalysis, 2018, 24, 2278-2279.	0.2	0
138	Microstructural Characterization Al-Cu-Mg-WC Composite Powders Prepared by Mechanical Alloying. Microscopy and Microanalysis, 2018, 24, 2288-2289.	0.2	0
139	An Al-Li Powder Alloy Prepared by Mechanical Milling and Sintered Using High Frequency Induction. Microscopy and Microanalysis, 2018, 24, 2254-2255.	0.2	0
140	Hardness Behavior in A17075 Aged Alloys Modified with Ce/La Rare Earths. Microscopy and Microanalysis, 2018, 24, 2270-2271.	0.2	0
141	Process Consolidation of Al-Cu-Mg Alloy Powders Reinforced with WC Particles. Microscopy and Microanalysis, 2018, 24, 2252-2253.	0.2	0
142	Fast Low-Temperature Consolidation of AlCoCrFeMnNi High Entropy Alloy. Microscopy and Microanalysis, 2018, 24, 2290-2291.	0.2	0
143	Nanocrystalline Particles of CoCrFeMnMoNi High Entropy Alloy as Reinforcement Material in an Al Matrix. Microscopy and Microanalysis, 2018, 24, 2292-2293.	0.2	0
144	Effect of Mg additions, Hot-Extrusion and Cold-Rolling on Microstructure and Mechanical Properties of 2024 Alloy during Aging. Microscopy and Microanalysis, 2018, 24, 2294-2295.	0.2	0

#	Article	IF	CITATIONS
145	Graphene as reinforcement agent in aluminum alloy 7075 matrix composite by using mechanical milling. Microscopy and Microanalysis, 2018, 24, 1726-1727.	0.2	0
146	Effect of Aluminum Concentration and Process Control Agents on synthesis of AlxCoCrFeMnNi Alloys Microscopy and Microanalysis, 2019, 25, 2242-2243.	0.2	0
147	Improvement of Mechanical Properties of an Aluminum Alloy 7075 by Adding Reduced Graphene Oxide Trough Mechanical Milling. Microscopy and Microanalysis, 2019, 25, 2622-2623.	0.2	Ο
148	Wear Behavior in Al-Cu-Mg Alloy Reinforced with WC Particles Fabricated by Mechanical Alloying. Microscopy and Microanalysis, 2019, 25, 2628-2629.	0.2	0
149	Impact of carbon nanotubes in a CrFeMnNiTi alloy proposed as a potential candidate for stainless-steel substitution. Materials Letters, 2019, 254, 103-106.	1.3	Ο
150	Hydrothermal Synthesis of Nanohybrid Gr-CeO2. Microscopy and Microanalysis, 2019, 25, 1792-1793.	0.2	0
151	Effect of Ni Addition and T6 Heat Treatment on Microstructure and Microhardness of Hot Plastic Deformed (Al-Si-Mg) Alloys. Microscopy and Microanalysis, 2019, 25, 2620-2621.	0.2	Ο
152	Exploring the Reinforcing Effect of AgcNP and Al2O3NP in Aluminum Alloy 2024 Matrix Composites. Microscopy and Microanalysis, 2019, 25, 2624-2625.	0.2	0
153	Densification, Microhardness and Microestructural Evolution by Fast Low-Temperature Consolidation of AlxCoCrFeMnNi High Entropy Alloy. Microscopy and Microanalysis, 2019, 25, 2644-2645.	0.2	0
154	Graphite Exfoliation by an Alternative Mechano-Chemical Process Using Sulfur as Exfoliating Agent. Microscopy and Microanalysis, 2019, 25, 2386-2387.	0.2	0
155	Preparation of an Exfoliated Graphite by Mechano-Chemical Processing, in the Presence of Sulfur. Microscopy and Microanalysis, 2019, 25, 2388-2389.	0.2	0
156	Study of Microstructure and Hardness in A356 Aluminum Alloy Reinforced with Al2O3 and WC After Hot Extrusion Microscopy and Microanalysis, 2020, 26, 2212-2214.	0.2	0
157	Conventional and Electromagnetic-induction Sintering of High Entropy Alloys for Low-temperature Applications. Microscopy and Microanalysis, 2020, 26, 2916-2917.	0.2	0
158	Mill Processing in Three Different Devices; The Effect of Intrinsic Intensity on the Material. Microscopy and Microanalysis, 2020, 26, 2206-2207.	0.2	0
159	Study of Densification, Microstructure, and Mechanical Properties in WC-Based Hardmetals Bonded with High and Medium Entropy Alloys. Microscopy and Microanalysis, 2020, 26, 3232-3233.	0.2	0
160	Investigation of graphite/CNTs on the equiatomic AlCoNi alloy: Hardness and surface morphology of the oxide scale. Materials Letters, 2021, 285, 129042.	1.3	0
161	Effect of Dispersion of Particles Nanohybrid Reinforcing in the 6063 Aluminum Alloy. Microscopy and Microanalysis, 2021, 27, 3272-3275.	0.2	0
162	Methanol detection in commercial sanitizing gels, during the COVID-19 Pandemic. TECNOCIENCIA (México), 2021, 15, 16-25.	0.1	0