Qiwen Lai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4564201/publications.pdf

Version: 2024-02-01

687220 794469 1,103 21 13 19 h-index citations g-index papers 22 22 22 1144 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The power of multifunctional metal hydrides: A key enabler beyond hydrogen storage. Journal of Alloys and Compounds, 2022, 920, 165936.	2.8	14
2	Solid-state hydrogen storage as a future renewable energy technology., 2021,, 263-287.		O
3	Nanoconfinement of Complex Borohydrides for Hydrogen Storage. ACS Applied Nano Materials, 2021, 4, 973-978.	2.4	16
4	Oneâ€6tep Synthesis of Carbonâ€Protected Co ₃ O ₄ Nanoparticles toward Longâ€Term Water Oxidation in Acidic Media. Advanced Energy and Sustainability Research, 2021, 2, 2100086.	2.8	6
5	Renewable hydrogen for the chemical industry. MRS Energy & Sustainability, 2020, 7, 1.	1.3	58
6	lonic conductivity of protonated layered titanate nanoâ€powder compact in water. Nano Select, 2020, 1, 346-352.	1.9	2
7	Nanoconfinement of borohydrides in hollow carbon spheres: Melt infiltration versus solvent impregnation for enhanced hydrogen storage. International Journal of Hydrogen Energy, 2019, 44, 23225-23238.	3.8	26
8	How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks. Advanced Sustainable Systems, 2019, 3, 1900043.	2.7	90
9	Hydrogen generation from a sodium borohydride–nickel core@shell structure under hydrolytic conditions. Nanoscale Advances, 2019, 1, 2707-2717.	2.2	39
10	Rational Design of Nanosized Light Elements for Hydrogen Storage: Classes, Synthesis, Characterization, and Properties. Advanced Materials Technologies, 2018, 3, 1700298.	3.0	34
11	Stabilization of Nanosized Borohydrides for Hydrogen Storage: Suppressing the Melting with TiCl ₃ Doping . ACS Applied Energy Materials, 2018, 1, 421-430.	2.5	18
12	Nanosizing Ammonia Borane with Nickel: A Path toward the Direct Hydrogen Release and Uptake of BNH Systems. Advanced Sustainable Systems, 2018, 2, 1700122.	2.7	17
13	Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art. Energy Storage Materials, 2018, 10, 168-198.	9.5	294
14	Hydrogen Storage: Rational Design of Nanosized Light Elements for Hydrogen Storage: Classes, Synthesis, Characterization, and Properties (Adv. Mater. Technol. 9/2018). Advanced Materials Technologies, 2018, 3, 1870037.	3.0	0
15	LiBH4 Electronic Destabilization with Nickel(II) Phthalocyanineâ€"Leading to a Reversible Hydrogen Storage System. ACS Applied Energy Materials, 2018, 1, 6824-6832.	2.5	12
16	Nanosizing ammonia borane with nickel – An all-solid and all-in-one approach for H2 generation by hydrolysis. International Journal of Hydrogen Energy, 2018, 43, 14498-14506.	3.8	11
17	Borohydrides as Solid-State Hydrogen Storage Materials: Past, Current Approaches and Future Perspectives. General Chemistry, 2018, 4, 180017.	0.6	7
18	Destabilisation of Ca(BH ₄) ₂ and Mg(BH ₄) ₂ via confinement in nanoporous Cu ₂ S hollow spheres. Sustainable Energy and Fuels, 2017, 1, 1308-1319.	2.5	26

QIWEN LAI

#	Article	lF	CITATION
19	Nanostructured materials for solid-state hydrogen storage: A review of the achievement of COST Action MP1103. International Journal of Hydrogen Energy, 2016, 41, 14404-14428.	3.8	94
20	Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. ChemSusChem, 2015, 8, 2789-2825.	3.6	302
21	Nanoconfinement of borohydrides in CuS hollow nanospheres: A new strategy compared to carbon nanotubes. International Journal of Hydrogen Energy, 2014, 39, 9339-9349.	3.8	37