Rahim Esfandyarpour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4563504/publications.pdf

Version: 2024-02-01

26 papers 689

567281 15 h-index 24 g-index

28 all docs $\begin{array}{c} 28 \\ \text{docs citations} \end{array}$

times ranked

28

642 citing authors

#	Article	IF	CITATIONS
1	Allâ€3Dâ€Printed, Flexible, and Hybrid Wearable Bioelectronic Tactile Sensors Using Biocompatible Nanocomposites for Health Monitoring. Advanced Materials Technologies, 2022, 7, .	5.8	24
2	The immune response to <scp>COVID</scp> â€19: Does sex matter?. Immunology, 2022, 166, 429-443.	4.4	18
3	A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy, 2022, 101, 107511.	16.0	57
4	A 3D Printed Wearable Bioelectronic Patch for Multiâ€Sensing and In Situ Sweat Electrolyte Monitoring. Advanced Materials Technologies, 2021, 6, 2001021.	5.8	32
5	Bioelectronic Wearables: A 3D Printed Wearable Bioelectronic Patch for Multi ensing and In Situ Sweat Electrolyte Monitoring (Adv. Mater. Technol. 4/2021). Advanced Materials Technologies, 2021, 6, 2170022.	5.8	2
6	A Machine Learningâ€Assisted Nanoparticleâ€Printed Biochip for Realâ€Time Single Cancer Cell Analysis. Advanced Biology, 2020, 4, e2000160.	3.0	21
7	Microtechnology-based methods for organoid models. Microsystems and Nanoengineering, 2020, 6, 76.	7.0	145
8	3D-bioprinted all-inclusive bioanalytical platforms for cell studies. Scientific Reports, 2020, 10, 14669.	3.3	18
9	Nanoparticleâ€Printed Biochips: A Machine Learningâ€Assisted Nanoparticleâ€Printed Biochip for Realâ€Time Single Cancer Cell Analysis (Adv. Biosys. 11/2020). Advanced Biology, 2020, 4, 2070115.	3.0	1
10	A Low-Cost, Disposable and Portable Inkjet-Printed Biochip for the Developing World. Sensors, 2020, 20, 3593.	3.8	24
11	An inkjet-printed and reusable platform for single-cell impedance cytometry. , 2020, , .		2
12	Personalized Drug Efficacy Monitoring Chip. Analytical Chemistry, 2019, 91, 14927-14935.	6.5	16
13	A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10250-10257.	7.1	64
14	Microinjectrode System for Combined Drug Infusion and Electrophysiology. Journal of Visualized Experiments, 2019, , .	0.3	4
15	Multifunctional, inexpensive, and reusable nanoparticle-printed biochip for cell manipulation and diagnosis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1306-E1315.	7.1	55
16	Nanoelectronic three-dimensional (3D) nanotip sensing array for real-time, sensitive, label-free sequence specific detection of nucleic acids. Biomedical Microdevices, 2016, 18, 7.	2.8	15
17	Rapid, label free, high throughput, miniaturized, and inexpensive nanoelectronic array as a cancer diagnosis tool. , 2015, , .		2
18	Label-free electronic detection of target cells. Proceedings of SPIE, 2014, , .	0.8	1

#	Article	IF	CITATIONS
19	Nanoelectronic impedance detection of target cells. Biotechnology and Bioengineering, 2014, 111, 1161-1169.	3.3	21
20	Matrix independent label-free nanoelectronic biosensor., 2014,,.		3
21	Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device. Nanotechnology, 2013, 24, 465301.	2.6	43
22	Microneedle biosensor: A method for direct label-free real time protein detection. Sensors and Actuators B: Chemical, 2013, 177, 848-855.	7.8	60
23	Thin Film Nanoelectronic Probe for Protein Detection – CORRIGENDUM. Materials Research Society Symposia Proceedings, 2013, 1572, 1-2.	0.1	4
24	Thin Film Nanoelectronic Probe for Protein Detection. Materials Research Society Symposia Proceedings, 2013, 1572, 1.	0.1	5
25	Label-free electronic probing of nucleic acids and proteins at the nanoscale using the nanoneedle biosensor. Biomicrofluidics, 2013, 7, 044114.	2.4	37
26	Electrical Detection of Protein Biomarkers Using Nanoneedle Biosensors. Materials Research Society Symposia Proceedings, 2012, 1414, 7.	0.1	10