Karina Possa Abrahao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4563452/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Food composition can influence how much alcohol your animal model drinks: A miniâ€review about the role of isoflavones. Alcoholism: Clinical and Experimental Research, 2022, 46, 6-12.	1.4	6
2	Changes in striatal dopamine release, sleep, and behavior during spontaneous Δ-9-tetrahydrocannabinol abstinence in male and female mice. Neuropsychopharmacology, 2022, 47, 1537-1549.	2.8	10
3	Dose-dependent alcohol effects on electroencephalogram: Sedation/anesthesia is qualitatively distinct from sleep. Neuropharmacology, 2020, 164, 107913.	2.0	7
4	Alcohol effects on globus pallidus connectivity: Role of impulsivity and binge drinking. PLoS ONE, 2020, 15, e0224906.	1.1	15
5	Parameter Optimization Using Covariance Matrix Adaptation—Evolutionary Strategy (CMA-ES), an Approach to Investigate Differences in Channel Properties Between Neuron Subtypes. Frontiers in Neuroinformatics, 2018, 12, 47.	1.3	13
6	Synaptic plasticity mechanisms common to learning and alcohol use disorder. Learning and Memory, 2018, 25, 425-434.	0.5	34
7	Classification of GABAergic neuron subtypes from the globus pallidus using wildâ€ŧype and transgenic mice. Journal of Physiology, 2018, 596, 4219-4235.	1.3	40
8	Ethanol-Sensitive Pacemaker Neurons in the Mouse External Globus Pallidus. Neuropsychopharmacology, 2017, 42, 1070-1081.	2.8	26
9	Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron, 2017, 96, 1223-1238.	3.8	285
10	Environmental Enrichment Blunts Ethanol Consumption after Restraint Stress in C57BL/6 Mice. PLoS ONE, 2017, 12, e0170317.	1.1	35
11	Descriminalização da maconha: o que muda no consumo. Ciência E Cultura, 2017, 69, 23-24.	0.5	0
12	Individual Differences in Ethanol Locomotor Sensitization Are Associated with Dopamine D1 Receptor Intra-Cellular Signaling of DARPP-32 in the Nucleus Accumbens. PLoS ONE, 2014, 9, e98296.	1.1	21
13	Distinct behavioral phenotypes in ethanol-induced place preference are associated with different extinction and reinstatement but not behavioral sensitization responses. Frontiers in Behavioral Neuroscience, 2014, 8, 267.	1.0	13
14	Forging a new path for Educational Neuroscience: An international young-researcher perspective on combining neuroscience and educational practices. Trends in Neuroscience and Education, 2014, 3, 28-31.	1.5	20
15	Expression of behavioral sensitization to ethanol is increased by energy drink administration. Pharmacology Biochemistry and Behavior, 2013, 110, 245-248.	1.3	24
16	Locomotor Sensitization to Ethanol Impairs NMDA Receptor-Dependent Synaptic Plasticity in the Nucleus Accumbens and Increases Ethanol Self-Administration. Journal of Neuroscience, 2013, 33, 4834-4842.	1.7	80
17	Accumbal dopamine D2 receptor function is associated with individual variability in ethanol behavioral sensitization. Neuropharmacology, 2012, 62, 882-889.	2.0	37
18	Individual differences are critical in determining modafinil-induced behavioral sensitization and cross-sensitization with methamphetamine in mice. Behavioural Brain Research, 2012, 233, 367-374.	1.2	14

#	Article	IF	CITATIONS
19	Behavioral sensitization to ethanol results in cross-sensitization to MK-801 but not to NMDA administered intra-accumbens. Behavioural Brain Research, 2012, 235, 218-224.	1.2	13
20	Administration of the 5-HT2C receptor antagonist SB-242084 into the nucleus accumbens blocks the expression of ethanol-induced behavioral sensitization in Albino Swiss mice. Neuroscience, 2011, 189, 178-186.	1.1	18
21	Nucleus accumbens dopamine D1 receptors regulate the expression of ethanol-induced behavioural sensitization. International Journal of Neuropsychopharmacology, 2011, 14, 175-185.	1.0	47
22	Individual differences to repeated ethanol administration may predict locomotor response to other drugs, and vice versa. Behavioural Brain Research, 2009, 197, 404-410.	1.2	26
23	Morphine attenuates the expression of sensitization to ethanol, but opioid antagonists do not. Neuroscience, 2008, 156, 857-864.	1.1	11