Karina Possa Abrahao

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4563452/publications.pdf
Version: 2024-02-01

Food composition can influence how much alcohol your animal model drinks: A miniấreview about the
role of isoflavones. Alcoholism: Clinical and Experimental Research, 2022, 46, 6-12.

Changes in striatal dopamine release, sleep, and behavior during spontaneous $\hat{1} "-9$-tetrahydrocannabinol abstinence in male and female mice. Neuropsychopharmacology, 2022, 47, 1537-1549.
2.8

10

Dose-dependent alcohol effects on electroencephalogram: Sedation/anesthesia is qualitatively distinct from sleep. Neuropharmacology, 2020, 164, 107913.

Alcohol effects on globus pallidus connectivity: Role of impulsivity and binge drinking. PLoS ONE, 2020, 15, e0224906.

Parameter Optimization Using Covariance Matrix Adaptationâ€"Evolutionary Strategy (CMA-ES), an
5 Approach to Investigate Differences in Channel Properties Between Neuron Subtypes. Frontiers in
1.3 Neuroinformatics, 2018, 12, 47.

Synaptic plasticity mechanisms common to learning and alcohol use disorder. Learning and Memory,
2018, 25, 425-434.

Classification of CABAergic neuron subtypes from the globus pallidus using wildâ€type and transgenic
$7 \quad \begin{aligned} & \text { Classification of GABAergic neuron subtypes from the } \\ & \text { mice. Journal of Physiology, 2018, 596, 4219-4235. }\end{aligned}$
1.3

40

Ethanol-Sensitive Pacemaker Neurons in the Mouse External Clobus Pallidus.
Neuropsychopharmacology, 2017, 42, 1070-1081.
$9 \quad$ Alcohol and the Brain: Neuronal Molecular Targets, Synapses, and Circuits. Neuron, 2017, 96, 1223-1238.
3.8

285

10 Environmental Enrichment Blunts Ethanol Consumption after Restraint Stress in C57BL/6 Mice. PLoS ONE, 2017, 12, e0170317.

11 DescriminalizaÃ§Ã£o da maconha: o que muda no consumo. CiÃãncia E Cultura, 2017, 69, 23-24.
$0.5 \quad 0$

12 Individual Differences in Ethanol Locomotor Sensitization Are Associated with Dopamine D1 Receptor Intra-Cellular Signaling of DARPP-32 in the Nucleus Accumbens. PLoS ONE, 2014, 9, e98296.
1.1

21

Distinct behavioral phenotypes in ethanol-induced place preference are associated with different
13 extinction and reinstatement but not behavioral sensitization responses. Frontiers in Behavioral
1.0

13
Neuroscience, 2014, 8, 267.
Forging a new path for Educational Neuroscience: An international young-researcher perspective on
14 combining neuroscience and educational practices. Trends in Neuroscience and Education, 2014, 3, 28-31.

Expression of behavioral sensitization to ethanol is increased by energy drink administration.
Pharmacology Biochemistry and Behavior, 2013, 110, 245-248.
1.3
1.5

20

Locomotor Sensitization to Ethanol Impairs NMDA Receptor-Dependent Synaptic Plasticity in the
16 Nucleus Accumbens and Increases Ethanol Self-Administration. Journal of Neuroscience, 2013, 33,
1.7

80 4834-4842.

17 Accumbal dopamine D2 receptor function is associated with individual variability in ethanol behavioral sensitization. Neuropharmacology, 2012, 62, 882-889.
2.0

37 cross-sensitization with methamphetamine in mice. Behavioural Brain Research, 2012, 233, 367-374.

Administration of the 5-HT2C receptor antagonist SB-242084 into the nucleus accumbens blocks the 20 expression of ethanol-induced behavioral sensitization in Albino Swiss mice. Neuroscience, 2011, 189, 178-186.

21 Nucleus accumbens dopamine D1 receptors regulate the expression of ethanol-induced behavioural sensitization. International Journal of Neuropsychopharmacology, 2011, 14, 175-185.

