Deryn E Fogg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4563383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tandem catalysis: a taxonomy and illustrative review. Coordination Chemistry Reviews, 2004, 248, 2365-2379.	9.5	913
2	Equilibrium Ring-Closing Metathesis. Chemical Reviews, 2009, 109, 3783-3816.	23.0	337
3	Olefin Metathesis at the Dawn of Implementation in Pharmaceutical and Specialtyâ€Chemicals Manufacturing. Angewandte Chemie - International Edition, 2016, 55, 3552-3565.	7.2	243
4	Highly Efficient Ruâ^'Pseudohalide Catalysts for Olefin Metathesis. Journal of the American Chemical Society, 2005, 127, 11882-11883.	6.6	162
5	Fabrication of Quantum Dot/Polymer Composites:Â Phosphine-Functionalized Block Copolymers as Passivating Hosts for Cadmium Selenide Nanoclusters. Macromolecules, 1997, 30, 417-426.	2.2	136
6	Multiple Tandem Catalysis:Â Facile Cycling between Hydrogenation and Metathesis Chemistry. Organometallics, 2001, 20, 5495-5497.	1.1	131
7	Fabrication of Quantum Dot-Polymer Composites:Â Semiconductor Nanoclusters in Dual-Function Polymer Matrices with Electron-Transporting and Cluster-Passivating Properties. Macromolecules, 1997, 30, 8433-8439.	2.2	115
8	Ruthenium-Catalyzed Ring-Closing Metathesis: Recent Advances, Limitations and Opportunities. Current Organic Chemistry, 2006, 10, 185-202.	0.9	115
9	The First Highly Active, Halide-Free Ruthenium Catalyst for Olefin Metathesis. Organometallics, 2003, 22, 3634-3636.	1.1	111
10	Composite thin films of CdSe nanocrystals and a surface passivating/electron transporting block copolymer: Correlations between film microstructure by transmission electron microscopy and electroluminescence. Journal of Applied Physics, 1999, 86, 4390-4399.	1.1	103
11	Tandem ROMPâ^'Hydrogenation with a Third-Generation Grubbs Catalyst. Journal of the American Chemical Society, 2007, 129, 4168-4169.	6.6	100
12	Oligomers as Intermediates in Ring-Closing Metathesis. Journal of the American Chemical Society, 2007, 129, 1024-1025.	6.6	100
13	Bimolecular Coupling as a Vector for Decomposition of Fast-Initiating Olefin Metathesis Catalysts. Journal of the American Chemical Society, 2018, 140, 6931-6944.	6.6	88
14	Decomposition of a Phosphine-Free Metathesis Catalyst by Amines and Other Bronsted Bases: Metallacyclobutane Deprotonation as a Major Deactivation Pathway. ACS Catalysis, 2015, 5, 4690-4698.	5.5	83
15	The First Ru(η3-PCP) Complexes of the Electron-Rich Pincer Ligand 1,3-Bis((dicyclohexylphosphino)methyl)benzene:  Structure and Mechanism in Transfer Hydrogenation Catalysis. Organometallics, 2004, 23, 4047-4054.	1.1	78
16	Operation of the Boomerang Mechanism in Olefin Metathesis Reactions Promoted by the Second-Generation Hoveyda Catalyst. ACS Catalysis, 2014, 4, 2387-2394.	5.5	78
17	Chemical Plants: High-Value Molecules from Essential Oils. Journal of the American Chemical Society, 2012, 134, 18889-18891.	6.6	76
18	N-Heterocyclic Carbenes as Activating Ligands for Hydrogenation and Isomerization of Unactivated Olefins. Organometallics, 2005, 24, 1056-1058.	1.1	73

#	Article	lF	CITATIONS
19	Electroluminescence from New Polynorbornenes That Contain Blue-Light-Emitting and Charge-Transport Side Chains. Macromolecules, 1997, 30, 3553-3559.	2.2	72
20	The divergent effects of strong NHC donation in catalysis. Chemical Science, 2015, 6, 6739-6746.	3.7	71
21	A General Decomposition Pathway for Phosphine-Stabilized Metathesis Catalysts: Lewis Donors Accelerate Methylidene Abstraction. Journal of the American Chemical Society, 2016, 138, 14668-14677.	6.6	71
22	A Stable Silylene in a Reactive Environment:Â Synthesis, Reactivity, and Silicon Extrusion Chemistry of a Coordinatively Unsaturated Ruthenium Silylene Complex Containing Chloride and η3-Pâ^'Câ^'P Ligands. Organometallics, 2002, 21, 534-540.	1.1	66
23	Ruthenium Metathesis Catalysts Containing Chelating Aryloxide Ligands. Organometallics, 2006, 25, 1940-1944.	1.1	66
24	Synthesis and Characterization of Gold(I)N-Heterocyclic Carbene Complexes Bearing Biologically Compatible Moieties. Organometallics, 2006, 25, 5824-5828.	1.1	65
25	lsomerization During Olefin Metathesis: An Assessment of Potential Catalyst Culprits. ChemCatChem, 2013, 5, 3548-3551.	1.8	64
26	Hydrogenolysis of a Ruthenium Carbene Complex to Yield Dihydrideâ^'Dihydrogen Tautomers: Mechanistic Implications for Tandem ROMPâ~Hydrogenation Catalysis. Inorganic Chemistry, 2000, 39, 5412-5414.	1.9	60
27	Shining New Light on an Old Problem: Retooling MALDI Mass Spectrometry for Organotransitionâ€Metal Catalysis. Angewandte Chemie - International Edition, 2008, 47, 303-306.	7.2	60
28	Deactivation of Ruthenium Metathesis Catalysts via Facile Formation of Face-Bridged Dimers. Organometallics, 2002, 21, 3335-3343.	1.1	59
29	Amineâ€Mediated Degradation in Olefin Metathesis Reactions that Employ the Secondâ€Generation Grubbs Catalyst. ChemCatChem, 2014, 6, 459-463.	1.8	57
30	Origin of the Breakthrough Productivity of Ruthenium–Cyclic Alkyl Amino Carbene Catalysts in Olefin Metathesis. Journal of the American Chemical Society, 2019, 141, 19236-19240.	6.6	55
31	An Attractive Route to Olefin Metathesis Catalysts: Facile Synthesis of a Ruthenium Alkylidene Complex Containing Labile Phosphane Donors. Advanced Synthesis and Catalysis, 2002, 344, 757.	2.1	54
32	Synthetic neoglycopolymer-recombinant human collagen hybrids as biomimetic crosslinking agents in corneal tissue engineering. Biomaterials, 2009, 30, 5403-5408.	5.7	54
33	Catalyst Decomposition during Olefin Metathesis Yields Isomerizationâ€Active Ruthenium Nanoparticles. ChemCatChem, 2016, 8, 2446-2449.	1.8	54
34	Decomposition of Olefin Metathesis Catalysts by BrÃ,nsted Base: Metallacyclobutane Deprotonation as a Primary Deactivating Event. Journal of the American Chemical Society, 2017, 139, 16446-16449.	6.6	53
35	Multifunctional Ruthenium Catalysts:  A Novel Borohydride-Stabilized Polyhydride Complex Containing the Basic, Chelating Diphosphine 1,4-Bis(dicyclohexylphosphino)butane and Its Application to Hydrogenation and Murai Catalysis. Organometallics, 2002, 21, 1042-1049.	1.1	52
36	Getting Ringâ€Closing Metathesis off the Bench: Reactionâ€Reactor Matching Transforms Metathesis Efficiency in the Assembly of Large Rings. Chemistry - A European Journal, 2010, 16, 11720-11725.	1.7	51

#	Article	IF	CITATIONS
37	Integrating Activity with Accessibility in Olefin Metathesis: An Unprecedentedly Reactive Ruthenium-Indenylidene Catalyst. Journal of the American Chemical Society, 2019, 141, 10626-10631.	6.6	50
38	Reactions of Grubbs Catalysts with Excess Methoxide: Formation of Novel Methoxyhydride Complexes. Organometallics, 2012, 31, 2349-2356.	1.1	49
39	Donor-Induced Decomposition of the Grubbs Catalysts: AnÂIntercepted Intermediate. Organometallics, 2014, 33, 6738-6741.	1.1	49
40	Chelate-Assisted Ring-Closing Metathesis: A Strategy for Accelerating Macrocyclization at Ambient Temperatures. Journal of the American Chemical Society, 2018, 140, 1604-1607.	6.6	49
41	The life, death, and ROMP activity of ruthenium complexes containing the basic, chelating diphosphine bis(dicyclohexyl)-1,4-phosphinobutane. Canadian Journal of Chemistry, 2001, 79, 958-963.	0.6	45
42	Ethylene-Promoted versus Ethylene-Free Enyne Metathesis. Journal of the American Chemical Society, 2011, 133, 15918-15921.	6.6	45
43	A comparison of catalytic activity for imine hydrogenation using Ru ditertiary phosphine complexes, including chiral systems. Inorganica Chimica Acta, 1994, 222, 85-90.	1.2	44
44	Olefinmetathese als aufstrebende Methode zur Herstellung von Pharmazeutika und Spezialchemikalien. Angewandte Chemie, 2016, 128, 3612-3626.	1.6	44
45	Ring-Opening Metathesis Polymerization via Ruthenium Complexes of Chelating Diphosphines. Macromolecules, 2000, 33, 2815-2818.	2.2	42
46	Electronic Effects of the Anionic Ligand in Ruthenium-Catalyzed Olefin Metathesis. Organometallics, 2009, 28, 944-946.	1.1	42
47	An Editorial About Elemental Analysis. Organometallics, 2016, 35, 3255-3256.	1.1	40
48	The kinetic instability of $\ddot{l}f$ -bound aryloxide in coordinatively unsaturated or labile complexes of ruthenium. Inorganica Chimica Acta, 2003, 345, 268-278.	1.2	37
49	Concise Route to Highly Reactive Ruthenium Metathesis Catalysts Containing a Labile Donor and an N-Heterocyclic Carbene (NHC) Ligand. Organometallics, 2003, 22, 1986-1988.	1.1	37
50	Hydrogenolysis versus Methanolysis of First- and Second-Generation Grubbs Catalysts: Rates, Speciation, and Implications for Tandem Catalysis. Organometallics, 2010, 29, 5450-5455.	1.1	37
51	Ligand manipulation and design for ruthenium metathesis and tandem metathesis-hydrogenation catalysis. Journal of Molecular Catalysis A, 2002, 190, 177-184.	4.8	36
52	Chiral and Achiral Diphosphine Complexes of Ruthenium(II) Incorporating Labile Nitrile Ligands:Â Synthesis and Solution Chemistry of Mono- and Dinuclear Derivatives of Ru2Cl4(PP)2(PP = Chelating) Tj ETQq0	0 OrrgBT /	Overstock 101
53	Carbonyl-Amplified Catalyst Performance: Balancing Stability against Activity for Five-Coordinate Ruthenium Hydride and Hydridocarbonyl Catalysts. Organometallics, 2009, 28, 441-447.	1.1	35

⁵⁴Net Amine Dealkylation at a Diruthenium Center: Dehydrogenation of a Secondary Amine and
Hydrolysis of a Coordinated Imine. Inorganic Chemistry, 1995, 34, 2557-2561.1.933

#	Article	IF	CITATIONS
55	Acrylate Metathesis via the Second-Generation Grubbs Catalyst: Unexpected Pathways Enabled by a PCy ₃ -Generated Enolate. Journal of the American Chemical Society, 2015, 137, 7318-7321.	6.6	33
56	Tandem catalysis versus one-pot catalysis: ensuring process orthogonality in the transformation of essential-oil phenylpropenoids into high-value products via olefin isomerization–metathesis. Catalysis Science and Technology, 2016, 6, 2077-2084.	2.1	33
57	Targeting an Achilles heel in olefin metathesis: A strategy for high-yield synthesis of second-generation Grubbs methylidene catalysts. Catalysis Science and Technology, 2012, 2, 1630.	2.1	31
58	Time as a Dimension in Highâ€Throughput Homogeneous Catalysis. Advanced Synthesis and Catalysis, 2008, 350, 2849-2855.	2.1	30
59	Sterically Driven Olefin Metathesis: The Impact of Alkylidene Substitution on Catalyst Activity. Organometallics, 2016, 35, 691-698.	1.1	30
60	1-Phenylisobenzofuran, 1-phenylnaphtho[2,3-c]furan, 1-phenylnaphtho[1,2-c]furan, and 3-phenylnaphtho[1,2-c]furan via cyclic hemiaminal, hemiacetal, and acetal precursors. Journal of Organic Chemistry, 1988, 53, 2942-2953.	1.7	29
61	lsotopic probes for ruthenium-catalyzed olefin metathesis. Catalysis Science and Technology, 2014, 4, 4210-4218.	2.1	29
62	Improved Syntheses of Versatile Ruthenium Hydridocarbonyl Catalysts Containing Electronâ€Rich Ancillary Ligands. Advanced Synthesis and Catalysis, 2008, 350, 773-777.	2.1	28
63	Integrating the Schrock and Grubbs Catalysts: Ruthenium–Binaphtholate Catalysts for Olefin Metathesis. Angewandte Chemie - International Edition, 2010, 49, 3807-3810.	7.2	28
64	The Future, Faster: Roles for High-Throughput Experimentation in Accelerating Discovery in Organometallic Chemistry and Catalysis. Organometallics, 2011, 30, 36-42.	1.1	27
65	The Impact of Oxygen on Leading and Emerging Ru-Carbene Catalysts for Olefin Metathesis: An Unanticipated Correlation Between Robustness and Metathesis Activity. ACS Catalysis, 2019, 9, 11329-11334.	5.5	27
66	Clean, Convenient, Highâ€yield Access to Secondâ€generation Ru Metathesis Catalysts from Commercially Available Precursors. ChemCatChem, 2012, 4, 2020-2025.	1.8	26
67	Bimolecular Coupling in Olefin Metathesis: Correlating Structure and Decomposition for Leading and Emerging Rutheniumâ^Carbene Catalysts. Journal of the American Chemical Society, 2021, 143, 11072-11079.	6.6	26
68	Overcoming Catalyst Decomposition in Acrylate Metathesis: Polyphenol Resins as Enabling Agents for PCy ₃ -Stabilized Metathesis Catalysts. ACS Catalysis, 2017, 7, 3181-3189.	5.5	25
69	High-Yield Synthesis of a Long-Sought, Labile Ru-NHC Complex and Its Application to the Concise Synthesis of Second-Generation Olefin Metathesis Catalysts. Organometallics, 2018, 37, 4551-4555.	1.1	25
70	The Impact of Water on Ru-Catalyzed Olefin Metathesis: Potent Deactivating Effects Even at Low Water Concentrations. ACS Catalysis, 2021, 11, 893-899.	5.5	25
71	Inhibiting σ → π Isomerization of Aryloxide Ligands in Late Transition-Metal Complexes. Organometallics, 2005, 24, 103-109.	1.1	24
72	Ru-aryloxide metathesis catalysts with enhanced lability: Assessing the efficiency and homogeneity of initiation via ring-opening metathesis polymerization studies. Inorganica Chimica Acta, 2006, 359, 1967-1973.	1.2	24

#	Article	IF	CITATIONS
73	Confronting Neutrality: Maximizing Success in the Analysis of Transition-Metal Catalysts by MALDI Mass Spectrometry. ACS Catalysis, 2016, 6, 4962-4971.	5.5	23
74	Differentiating metal centers in homopolynuclear systems: use of the oxodiphenylphosphoranido .mudiphenylphosphido (.muPPh2) complexes. Organometallics, 1987, 6, 2252-2254.	1.1	22
75	Chiral phosphine complexes of ruthenium(II) arenes. Journal of Organometallic Chemistry, 1993, 462, C21-C23.	0.8	22
76	A Chelate-Stabilized Ruthenium(σ-pyrrolato) Complex:  Resolving Ambiguities in Nuclearity and Coordination Geometry through 1H PGSE and 31P Solid-State NMR Studies. Inorganic Chemistry, 2006, 45, 10293-10299.	1.9	22
77	Mechanism of Olefin Hydrogenation Catalyzed by RuHCl(L)(PR ₃) ₂ Complexes (L) Tj E	TQq1110.	784314 rgB
78	Compatibility of the Vinylidene Ligand and Perfluorophenoxide. Organometallics, 2004, 23, 2583-2590.	1.1	21
79	Geometric and Electronic Structure of aC1-Symmetric Ruthenium-Aryloxide Metathesis Catalyst: An Experimental and Computational Study. Organometallics, 2009, 28, 5424-5431.	1.1	21
80	Challenging Metathesis Catalysts with Nucleophiles and BrÃ,nsted Base: Examining the Stability of State-of-the-Art Ruthenium Carbene Catalysts to Attack by Amines. ACS Catalysis, 2020, 10, 11623-11633.	5.5	21
81	X-ray absorption methods for the determination of Ru–Cl bond covalency in olefin metathesis catalysts: On the normalization of chlorine K-edges in ruthenium complexes. Inorganica Chimica Acta, 2006, 359, 3042-3047.	1.2	20
82	Protection of Ruthenium Olefin Metathesis Catalysts by Encapsulation in a Selfâ€assembled Resorcinarene Capsule. ChemCatChem, 2020, 12, 4019-4023.	1.8	19
83	Ruthenium aryloxide catalysts: Synthesis and applications in ring-closing metathesis. Journal of Molecular Catalysis A, 2006, 254, 105-110.	4.8	18
84	Inside the black box — Perspectives on transformations in catalysis. Canadian Journal of Chemistry, 2008, 86, 931-941.	0.6	18
85	Hydroxide-Induced Degradation of Olefin Metathesis Catalysts: A Challenge for Metathesis in Alkaline Media. ACS Catalysis, 2020, 10, 3838-3843.	5.5	15
86	Routes to dicationic ruthenium(II) nitrile complexes containing chelating diphosphine ligands: X-ray analyses of Ru(dppb)(MeCN)42+ 2PF6â^'(dppbâ€,=â€,Ph2P(CH2)4PPh2) and trans-RuCl2(MeCN)4. Canadian Journal of Chemistry, 1995, 73, 1084-1091.	0.6	14
87	Simultaneous Observation of Doubly and Triply Chloride Bridged Isomers of an Electron-Rich Ruthenium Dimer:  Role of Dimer Geometry in Determining Reactivity. Organometallics, 2005, 24, 4721-4728.	1.1	14
88	New pseudohalide ligands in Ru-catalyzed olefin metathesis — A robust, air-activated iminopyrrolato catalyst. Canadian Journal of Chemistry, 2005, 83, 748-754.	0.6	14
89	Monitoring ring-closing metathesis: Limitations on the utility of 1H NMR analysis. Inorganica Chimica Acta, 2010, 363, 481-486.	1.2	12
90	Unusually Strong Binding of Dinitrogen to a Ruthenium Center. Angewandte Chemie - International Edition, 2011, 50, 916-919.	7.2	12

#	Article	IF	CITATIONS
91	Merrifield resin-assisted routes to second-generation catalysts for olefin metathesis. Catalysis Science and Technology, 2018, 8, 1535-1544.	2.1	11
92	Rapid Decomposition of Olefin Metathesis Catalysts by a Truncated N-Heterocyclic Carbene: Efficient Catalyst Quenching and N-Heterocyclic Carbene Vinylation. ACS Catalysis, 2018, 8, 11822-11826.	5.5	11
93	Cluster bound phosphinovinylidenes and phosphinitovinylidenes from alkynilphosphines and their Organometallic Chemistry, 1988, 352, C17-C21.	0.8	9
94	Routes to High-Performing Ruthenium–lodide Catalysts for Olefin Metathesis: Ligand Lability Is Key to Efficient Halide Exchange. Organometallics, 2021, 40, 1811-1816.	1.1	9
95	A Reactive Ru–Binaphtholate Building Block with Self-Tuning Hapticity. Journal of the American Chemical Society, 2011, 133, 14054-14062.	6.6	8
96	The Janus face of high trans-effect carbenes in olefin metathesis: gateway to both productivity and decomposition. Chemical Science, 2022, 13, 5107-5117.	3.7	8
97	Stable phenylene- and biphenylene-bis(isobenzofuran)s related to diphenylisobenzofuran. Canadian Journal of Chemistry, 2009, 87, 738-744.	0.6	7
98	Dissecting out the effect of Ru-OAr bonding in a five-coordinate complex of ruthenium (II). Canadian Journal of Chemistry, 2009, 87, 361-367.	0.6	7
99	Toward E-selective Olefin Metathesis: Computational Design and Experimental Realization of Ruthenium Thio-Indolate Catalysts. Topics in Catalysis, 0, , 1.	1.3	7
100	Differentiating metal sites in homopolynuclear systems via incorporation of π-donors: Complexes of	1.0	6
101	A Ru-isocyanate initiator for fast, living, precisely controlled ring-opening metathesis polymerization at ambient temperatures. Dalton Transactions, 2012, 41, 14476.	1.6	6
102	On the Compatibility of Ruthenium Metathesis Catalysts with Secondary Phosphines. Organometallics, 2013, 32, 7245-7248.	1.1	6
103	The Roles of Organometallic Chemistry in Pharmaceutical Research and Development. Organometallics, 2019, 38, 1-2.	1.1	6
104	Synthesis and dynamic behaviour of a dimeric ruthenium benzylidene complex bearing a truncated N-heterocyclic carbene ligand. Journal of Organometallic Chemistry, 2017, 847, 162-166.	0.8	5
105	Meet the Women of Catalysis. ChemCatChem, 2019, 11, 3557-3574.	1.8	5
106	The reductive metalation of 9-phenylacridine. Journal of Heterocyclic Chemistry, 1985, 22, 879-881.	1.4	4
107	Introduction to the Virtual Issue on Olefin Metathesis—Fundamentals and Frontiers. Organometallics, 2017, 36, 1881-1883.	1.1	4
108	From Drug Cocktails to Tissue Engineering: Synthesis of ROMP Polymers for Biomedical Applications. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 285-303.	0.1	4

#	Article	IF	CITATIONS
109	Ring-Closing Metathesis Synthesis of Medium and Large Rings: Challenges and Implications for Sustainable Synthesis. NATO Science for Peace and Security Series A: Chemistry and Biology, 2010, , 129-156.	0.5	3
110	Exploring the Variable Hapticity of the Arylamide Ligand: Access to σ-Amidophenyl and Ï€-Cyclohexadienylimine Structures. Organometallics, 2013, 32, 4723-4725.	1.1	3
111	Catalyst Decomposition during Olefin Metathesis Yields Isomerization-Active Ruthenium Nanoparticles. ChemCatChem, 2016, 8, 2424-2424.	1.8	3
112	Celebrating Organometallics at 35 Years, and the Advancement of Learning at 400+. Organometallics, 2016, 35, 4003-4003.	1.1	1
113	The 2014 <i>Organometallics</i> Symposium. Organometallics, 2014, 33, 5049-5051.	1.1	0