Gert Schansker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4563351/publications.pdf Version: 2024-02-01

	236925	315739
4,184	25	38
citations	h-index	g-index
42	42	3347
docs citations	times ranked	citing authors
	citations 42	4,18425citationsh-index4242

#	Article	lF	CITATIONS
1	Identification of Twelve Different Mineral Deficiencies in Hydroponically Grown Sunflower Plants on the Basis of Short Measurements of the Fluorescence and P700 Oxidation/Reduction Kinetics. Frontiers in Plant Science, 2022, 13, .	3.6	3
2	Determining photosynthetic control, a probe for the balance between electron transport and Calvin–Benson cycle activity, with the DUAL-KLAS-NIR. Photosynthesis Research, 2022, 153, 191-204.	2.9	5
3	Consequences of the reduction of the Photosystem II antenna size on the light acclimation capacity of <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2020, 43, 866-879.	5.7	29
4	Photosynthesis without β-carotene. ELife, 2020, 9, .	6.0	30
5	Rapidly reversible chlorophyll fluorescence quenching induced by pulses of supersaturating light in vivo. Photosynthesis Research, 2019, 142, 35-50.	2.9	12
6	Salt stress effects on the photosynthetic electron transport chain in two chickpea lines differing in their salt stress tolerance. Photosynthesis Research, 2018, 136, 291-301.	2.9	52
7	Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 2017, 132, 13-66.	2.9	419
8	Effect of Light Acclimation on the Organization of Photosystem II Super- and Sub-Complexes in Arabidopsis thaliana. Frontiers in Plant Science, 2016, 7, 105.	3.6	53
9	Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 2014, 122, 121-158.	2.9	585
10	Chlorophyll a fluorescence: beyond the limits of the QA model. Photosynthesis Research, 2014, 120, 43-58.	2.9	137
11	The physiological roles and metabolism of ascorbate in chloroplasts. Physiologia Plantarum, 2013, 148, 161-175.	5.2	33
12	Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. Photosynthesis Research, 2012, 111, 303-314.	2.9	51
13	The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: a study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress. Physiologia Plantarum, 2012, 144, 277-288.	5.2	164
14	Stimulatory effect of ascorbate, the alternative electron donor of photosystem II, on the hydrogen production of sulphur-deprived Chlamydomonas reinhardtii. International Journal of Hydrogen Energy, 2012, 37, 8864-8871.	7.1	11
15	The chl a fluorescence intensity is remarkably insensitive to changes in the chlorophyll content of the leaf as long as the chl a/b ratio remains unaffected. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 770-779.	1.0	65
16	Evidence for a fluorescence yield change driven by a light-induced conformational change within photosystem II during the fast chlorophyll a fluorescence rise. Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 1032-1043.	1.0	88
17	Synthetic Antisense Oligodeoxynucleotides to Transiently Suppress Different Nucleus- and Chloroplast-Encoded Proteins of Higher Plant Chloroplasts Â. Plant Physiology, 2011, 157, 1628-1641.	4.8	40
18	Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl <i>a</i> fluorescence kinetics in barley varieties differing in their drought tolerance. Physiologia Plantarum, 2009, 137, 188-199.	5.2	264

GERT SCHANSKER

#	Article	IF	CITATIONS
19	Models of Chlorophyll a Fluorescence Transients. Advances in Photosynthesis and Respiration, 2009, , 85-123.	1.0	49
20	Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. , 2009, 137, 188.		1
21	AtOSA1, a Member of the Abc1-Like Family, as a New Factor in Cadmium and Oxidative Stress Response Â. Plant Physiology, 2008, 147, 719-731.	4.8	77
22	Chl a Fluorescence and 820 nm Transmission Changes Occurring During a Dark-to-Light Transition in Pine Needles and Pea Leaves: A Comparison. , 2008, , 945-949.		8
23	Photosynthetic electron transport activity in heat-treated barley leaves: The role of internal alternative electron donors to photosystem II. Biochimica Et Biophysica Acta - Bioenergetics, 2007, 1767, 295-305.	1.0	126
24	Probing the responses of barley cultivars (Hordeum vulgare L.) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany, 2007, 60, 438-446.	4.2	429
25	A non-invasive assay of the plastoquinone pool redox state based on the OJIP-transient. Photosynthesis Research, 2007, 93, 193-203.	2.9	176
26	A dip in the chlorophyll fluorescence induction at 0.2–2 s in Trebouxia-possessing lichens reflects a fast reoxidation of photosystem I. A comparison with higher plants. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 12-20.	1.0	44
27	Dark recovery of the Chl a fluorescence transient (OJIP) after light adaptation: The qT-component of non-photochemical quenching is related to an activated photosystem I acceptor side. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 787-797.	1.0	154
28	Quantification of non-QB-reducing centers in leaves using a far-red pre-illumination. Photosynthesis Research, 2005, 84, 145-151.	2.9	56
29	Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). Journal of Plant Physiology, 2005, 162, 181-194.	3.5	96
30	Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1706, 250-261.	1.0	386
31	In intact leaves, the maximum fluorescence level (FM) is independent of the redox state of the plastoquinone pool: A DCMU-inhibition study. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1708, 275-282.	1.0	114
32	Characterization of the 820-nm transmission signal paralleling the chlorophyll a fluorescence rise (OJIP) in pea leaves. Functional Plant Biology, 2003, 30, 785.	2.1	251
33	Reduction of the Mn Cluster of the Water-Oxidizing Enzyme by Nitric Oxide:  Formation of an S-2 State. Biochemistry, 2002, 41, 3057-3064.	2.5	46
34	Interaction of nitric oxide with the oxygen evolving complex of photosystem II and manganese catalase: a comparative study. Journal of Biological Inorganic Chemistry, 2000, 5, 354-363.	2.6	24
35	Performance of active Photosystem II centers in photoinhibited pea leaves. Photosynthesis Research, 1999, 62, 175-184.	2.9	20
36	NO Reversibly Reduces the Water-Oxidizing Complex of Photosystem II through S0 and S-1 to the State Characterized by the Mn(II)-Mn(III) Multiline EPR Signal. Biochemistry, 1998, 37, 16445-16451.	2.5	25

#	Article	IF	CITATIONS
37	Chloroacetates as inhibitors of photosystem II: Effects on electron acceptor side. Journal of Photochemistry and Photobiology B: Biology, 1997, 37, 107-117.	3.8	20
38	Characterization of the complex interaction between the electron acceptor silicomolybdate and Photosystem II. Photosynthesis Research, 1993, 37, 165-175.	2.9	17
39	Comparison of Photosynthetic Activities in Triazine-Resistant and Susceptible Biotypes of Chenopodium album. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1993, 48, 278-282.	1.4	15