List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4563163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	LOCAL CLIMATE CHANGE AND URBAN HEAT ISLAND MITIGATION TECHNIQUES $\hat{a} \in$ "THE STATE OF THE ART. Journal of Civil Engineering and Management, 2015, 22, 1-16.	1.9	326
2	State of the art on the development of cool coatings for buildings and cities. Solar Energy, 2017, 144, 660-680.	2.9	170
3	Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model. Applied Energy, 2014, 114, 621-631.	5.1	162
4	Environmental effects on natural frequencies of the San Pietro bell tower in Perugia, Italy, and their removal for structural performance assessment. Mechanical Systems and Signal Processing, 2017, 82, 307-322.	4.4	147
5	Inter-building effect: Simulating the impact of a network of buildings on the accuracy of building energy performance predictions. Building and Environment, 2012, 58, 37-45.	3.0	128
6	The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring. Energy and Buildings, 2014, 69, 154-164.	3.1	128
7	Review of multiâ€domain approaches to indoor environmental perception and behaviour. Building and Environment, 2020, 176, 106804.	3.0	127
8	PROGRESS IN URBAN GREENERY MITIGATION SCIENCE – ASSESSMENT METHODOLOGIES ADVANCED TECHNOLOGIES AND IMPACT ON CITIES. Journal of Civil Engineering and Management, 2018, 24, 638-671.	1.9	109
9	Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation. Applied Energy, 2018, 212, 1448-1461.	5.1	107
10	On an innovative integrated technique for energy refurbishment of historical buildings: Thermal-energy, economic and environmental analysis of a case study. Applied Energy, 2016, 162, 1313-1322.	5.1	101
11	A method for assessing buildings' energy efficiency by dynamic simulation and experimental activity. Applied Energy, 2012, 97, 419-429.	5.1	97
12	Albedo control as an effective strategy to tackle Global Warming: A case study. Applied Energy, 2014, 130, 641-647.	5.1	95
13	Multipurpose characterization of glazing systems with silica aerogel: In-field experimental analysis of thermal-energy, lighting and acoustic performance. Building and Environment, 2014, 81, 92-102.	3.0	94
14	Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies. Applied Energy, 2014, 133, 224-235.	5.1	91
15	Toward mitigating urban heat island effects: Investigating the thermal-energy impact of bio-inspired retro-reflective building envelopes in dense urban settings. Energy and Buildings, 2015, 102, 380-389.	3.1	85
16	Integration of renewable technologies in historical and heritage buildings: A review. Energy and Buildings, 2018, 177, 96-111.	3.1	85
17	On the thermal and visual pedestrians' perception about cool natural stones for urban paving: A field survey in summer conditions. Building and Environment, 2016, 107, 198-214.	3.0	84
18	Exploring mutual shading and mutual reflection inter-building effects on building energy performance. Applied Energy, 2017, 185, 1556-1564.	5.1	84

#	Article	IF	CITATIONS
19	Optimal control of natural ventilation as passive cooling strategy for improving the energy performance of building envelope with PCM integration. Renewable Energy, 2020, 162, 171-181.	4.3	84
20	On the impact of innovative materials on outdoor thermal comfort of pedestrians in historical urban canyons. Renewable Energy, 2018, 118, 825-839.	4.3	81
21	A review of select human-building interfaces and their relationship to human behavior, energy use and occupant comfort. Building and Environment, 2020, 178, 106920.	3.0	79
22	On the effect of summer heatwaves and urban overheating on building thermal-energy performance in central Italy. Sustainable Cities and Society, 2017, 28, 187-200.	5.1	76
23	Multipurpose experimental characterization of smart nanocomposite cement-based materials for thermal-energy efficiency and strain-sensing capability. Solar Energy Materials and Solar Cells, 2017, 161, 77-88.	3.0	75
24	Outdoor comfort conditions in urban areas: On citizens' perspective about microclimate mitigation of urban transit areas. Sustainable Cities and Society, 2018, 39, 16-36.	5.1	73
25	What drives our behaviors in buildings? A review on occupant interactions with building systems from the lens of behavioral theories. Building and Environment, 2020, 179, 106928.	3.0	73
26	Experimental in-lab and in-field analysis of waterproof membranes for cool roof application and urban heat island mitigation. Energy and Buildings, 2016, 114, 180-190.	3.1	67
27	Adaptive measures for mitigating urban heat islands: The potential of thermochromic materials to control roofing energy balance. Applied Energy, 2019, 247, 155-170.	5.1	65
28	Active cool roof effect: impact of cool roofs on cooling system efficiency. Advances in Building Energy Research, 2013, 7, 209-221.	1.1	64
29	Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement. Sustainability, 2014, 6, 4706-4722.	1.6	64
30	The impact of place-based affiliation networks on energy conservation: An holistic model that integrates the influence of buildings, residents and the neighborhood context. Energy and Buildings, 2012, 55, 637-646.	3.1	63
31	How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy. Renewable Energy, 2018, 127, 920-935.	4.3	63
32	Infrared Thermography Assessment of Thermal Bridges in Building Envelope: Experimental Validation in a Test Room Setup. Sustainability, 2014, 6, 7107-7120.	1.6	62
33	Experimental and numerical characterization of innovative cardboard based panels: Thermal and acoustic performance analysis and life cycle assessment. Building and Environment, 2016, 95, 145-159.	3.0	61
34	Thermal-physics and energy performance of an innovative green roof system: The Cool-Green Roof. Solar Energy, 2015, 116, 337-356.	2.9	60
35	Summer and Winter Effect of Innovative Cool Roof Tiles on the Dynamic Thermal Behavior of Buildings. Energies, 2014, 7, 2343-2361.	1.6	58
36	Effect of dynamic characteristics of building envelope on thermal-energy performance in winter conditions: In field experiment. Energy and Buildings, 2014, 80, 218-230.	3.1	57

#	Article	IF	CITATIONS
37	Thermal stress reduction in cool roof membranes using phase change materials (PCM). Energy and Buildings, 2018, 158, 1097-1105.	3.1	57
38	How subjective and non-physical parameters affect occupants' environmental comfort perception. Energy and Buildings, 2018, 178, 107-129.	3.1	57
39	Behaviour of a concrete wall containing microâ€encapsulated PCM after a decade of its construction. Solar Energy, 2020, 200, 108-113.	2.9	57
40	Assessing occupants' personal attributes in relation to human perception of environmental comfort: Measurement procedure and data analysis. Building and Environment, 2020, 177, 106901.	3.0	57
41	A Building Energy Efficiency Optimization Method by Evaluating the Effective Thermal Zones Occupancy. Energies, 2012, 5, 5257-5278.	1.6	56
42	Palm oil-based bio-PCM for energy efficient building applications: Multipurpose thermal investigation and life cycle assessment. Journal of Energy Storage, 2020, 28, 101129.	3.9	56
43	Expanding Inter-Building Effect modeling to examine primary energy for lighting. Energy and Buildings, 2014, 76, 513-523.	3.1	55
44	Influence of human behavior on cool roof effect for summer cooling. Building and Environment, 2015, 88, 116-128.	3.0	55
45	Environmental Impact of Industrial Prefabricated Buildings: Carbon and Energy Footprint Analysis Based on an LCA Approach. Energy Procedia, 2014, 61, 2841-2844.	1.8	52
46	Hierarchical environmental risk mapping of material degradation in historic masonry buildings: An integrated approach considering climate change and structural damage. Construction and Building Materials, 2019, 215, 998-1014.	3.2	52
47	Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance. Energy, 2019, 176, 667-681.	4.5	51
48	Thermal-energy analysis of natural "cool―stone aggregates as passive cooling and global warming mitigation technique. Urban Climate, 2015, 14, 301-314.	2.4	50
49	Development of Clay Tile Coatings for Steep-Sloped Cool Roofs. Energies, 2013, 6, 3637-3653.	1.6	49
50	PCM for improving polyurethane-based cool roof membranes durability. Solar Energy Materials and Solar Cells, 2017, 160, 34-42.	3.0	48
51	Sustainable adobe bricks with seagrass fibres. Mechanical and thermal properties characterization. Construction and Building Materials, 2020, 239, 117669.	3.2	48
52	Modelling urban-scale occupant behaviour, mobility, and energy in buildings: A survey. Building and Environment, 2020, 183, 106964.	3.0	48
53	An energy-balanced analytic model for urban heat canyons: comparison with experimental data. Advances in Building Energy Research, 2013, 7, 222-234.	1.1	47
54	Thermal and lighting effects of an external venetian blind: Experimental analysis in a full scale test room. Building and Environment, 2016, 106, 45-56.	3.0	47

#	Article	IF	CITATIONS
55	A new wearable monitoring system for investigating pedestrians' environmental conditions: Development of the experimental tool and start-up findings. Science of the Total Environment, 2018, 630, 690-706.	3.9	47
56	The hygrothermal performance of residential buildings at urban and rural sites: Sensible and latent energy loads and indoor environmental conditions. Energy and Buildings, 2017, 152, 792-803.	3.1	45
57	Measuring human physiological indices for thermal comfort assessment through wearable devices: A review. Measurement: Journal of the International Measurement Confederation, 2021, 183, 109872.	2.5	45
58	Experimental thermo-acoustic characterization of innovative common reed bio-based panels for building envelope. Building and Environment, 2016, 102, 217-229.	3.0	42
59	New cool concrete for building envelopes and urban paving: Optics-energy and thermal assessment in dynamic conditions. Energy and Buildings, 2017, 151, 381-392.	3.1	42
60	The impacts of building characteristics, social psychological and cultural factors on indoor environment quality productivity belief. Building and Environment, 2020, 185, 107189.	3.0	42
61	How peers' personal attitudes affect indoor microclimate and energy need in an institutional building: Results from a continuous monitoring campaign in summer and winter conditions. Energy and Buildings, 2016, 126, 485-497.	3.1	41
62	Phosphorescent-based pavements for counteracting urban overheating – A proof of concept. Solar Energy, 2020, 202, 540-552.	2.9	40
63	Human-building interaction at work: Findings from an interdisciplinary cross-country survey in Italy. Building and Environment, 2018, 132, 147-159.	3.0	39
64	Intra-urban microclimate investigation in urban heat island through a novel mobile monitoring system. Scientific Reports, 2021, 11, 9732.	1.6	39
65	An Integrated HBIM Simulation Approach for Energy Retrofit of Historical Buildings Implemented in a Case Study of a Medieval Fortress in Italy. Energies, 2020, 13, 2601.	1.6	38
66	Network synergy effect: Establishing a synergy between building network and peer network energy conservation effects. Energy and Buildings, 2014, 68, 312-320.	3.1	37
67	Integrated Thermal-Energy Analysis of Innovative Translucent White Marble for Building Envelope Application. Sustainability, 2014, 6, 5439-5462.	1.6	37
68	Sustainable Ethanol Production from Common Reed (Phragmites australis) through Simultaneuos Saccharification and Fermentation. Sustainability, 2015, 7, 12149-12163.	1.6	36
69	Innovative Cardboard Based Panels with Recycled Materials from the Packaging Industry: Thermal and Acoustic Performance Analysis. Energy Procedia, 2015, 78, 321-326.	1.8	36
70	The role of building occupants' education in their resilience to climate-change related events. Energy and Buildings, 2017, 154, 217-231.	3.1	35
71	Experimental testing of cooling internal loads with a radiant wall. Renewable Energy, 2018, 116, 1-8.	4.3	35
72	Thermochromic materials for indoor thermal comfort improvement: Finite difference modeling and validation in a real case-study building. Applied Energy, 2020, 262, 114147.	5.1	35

#	Article	IF	CITATIONS
73	Differentiating responses of weather files and local climate change to explain variations in building thermal-energy performance simulations. Solar Energy, 2017, 153, 224-237.	2.9	34
74	Decarbonizing household heating: Reviewing demographics, geography and low-carbon practices and preferences in five European countries. Renewable and Sustainable Energy Reviews, 2021, 139, 110703.	8.2	34
75	How to enhance thermal energy storage effect of PCM in roofs with varying solar reflectance: Experimental and numerical assessment of a new roof system for passive cooling in different climate conditions. Solar Energy, 2019, 192, 106-119.	2.9	33
76	Test rooms to study human comfort in buildings: A review of controlled experiments and facilities. Renewable and Sustainable Energy Reviews, 2021, 149, 111359.	8.2	32
77	On a Cool Coating for Roof Clay Tiles: Development of the Prototype and Thermal-energy Assessment. Energy Procedia, 2014, 45, 453-462.	1.8	31
78	Thermal-energy analysis of roof cool clay tiles for application in historic buildings and cities. Sustainable Cities and Society, 2015, 19, 271-280.	5.1	31
79	Innovative cool roofing membrane with integrated phase change materials: Experimental characterization of morphological, thermal and optic-energy behavior. Energy and Buildings, 2016, 112, 40-48.	3.1	31
80	Inter-building assessment of urban heat island mitigation strategies: Field tests and numerical modelling in a simplified-geometry experimental set-up. Renewable Energy, 2020, 147, 1663-1675.	4.3	31
81	A Clobal Building Occupant Behavior Database. Scientific Data, 2022, 9, .	2.4	31
82	Sustainability Assessment of Historic Buildings: Lesson Learnt from an Italian case Study through LEED® Rating System. Energy Procedia, 2014, 61, 1029-1032.	1.8	30
83	The Impact of Local Microclimate Boundary Conditions on Building Energy Performance. Sustainability, 2015, 7, 9207-9230.	1.6	30
84	The impact of natural ventilation on building energy requirement at inter-building scale. Energy and Buildings, 2016, 127, 870-883.	3.1	29
85	Optimization of roof solar reflectance under different climate conditions, occupancy, building configuration and energy systems. Energy and Buildings, 2017, 151, 81-97.	3.1	29
86	Thermal performance of coupled cool roof and cool façade: Experimental monitoring and analytical optimization procedure. Energy and Buildings, 2017, 157, 35-52.	3.1	27
87	Environmental data clustering analysis through wearable sensing techniques: New bottomâ€up process aimed to identify intraâ€urban granular morphologies from pedestrian transects. Building and Environment, 2020, 171, 106641.	3.0	27
88	Investigation of CO2 Variation and Mapping Through Wearable Sensing Techniques for Measuring Pedestrians' Exposure in Urban Areas. Sustainability, 2020, 12, 3936.	1.6	27
89	Environmental assessment of four waste cooking oil valorization pathways. Waste Management, 2022, 138, 219-233.	3.7	27
90	Experimental Analysis of Cool Traditional Solar Shading Systems for Residential Buildings. Energies, 2015, 8, 2197-2210.	1.6	26

6

#	Article	IF	CITATIONS
91	Empirical data-driven multi-layer perceptron and radial basis function techniques in predicting the performance of nanofluid-based modified tubular solar collectors. Journal of Cleaner Production, 2021, 295, 126409.	4.6	26
92	Long Persistent Luminescence: A Road Map Toward Promising Future Developments in Energy and Environmental Science. Annual Review of Materials Research, 2021, 51, 409-433.	4.3	26
93	Microclimate and air quality investigation in historic hilly urban areas: Experimental and numerical investigation in central Italy. Sustainable Cities and Society, 2017, 33, 27-44.	5.1	25
94	Assessing the Potentiality of Animal Fat Based-Bio Phase Change Materials (PCM) for Building Applications: An Innovative Multipurpose Thermal Investigation. Energies, 2019, 12, 1111.	1.6	25
95	Cultural heritage microclimate change: Human-centric approach to experimentally investigate intra-urban overheating and numerically assess foreseen future scenarios impact. Science of the Total Environment, 2020, 703, 134448.	3.9	25
96	Facility Energy Management Application of HBIM for Historical Low-Carbon Communities: Design, Modelling and Operation Control of Geothermal Energy Retrofit in a Real Italian Case Study. Energies, 2020, 13, 6338.	1.6	25
97	Investigation on the effect of innovative cool tiles on local indoor thermal conditions: Finite element modeling and continuous monitoring. Building and Environment, 2016, 97, 55-68.	3.0	24
98	Development of Net Zero Energy Settlements Using Advanced Energy Technologies. Procedia Engineering, 2017, 180, 1388-1401.	1.2	24
99	Cool Roof Impact on Building Energy Need: The Role of Thermal Insulation with Varying Climate Conditions. Energies, 2019, 12, 3354.	1.6	24
100	Thermo-optic durability of cool roof membranes: Effect of shape stabilized phase change material inclusion on building energy efficiency. Energy and Buildings, 2020, 207, 109592.	3.1	24
101	Microclimate mitigation for enhancing energy and environmental performance of Near Zero Energy Settlements in Italy. Sustainable Cities and Society, 2020, 53, 101964.	5.1	24
102	Natural Materials for Thermal Insulation and Passive Cooling Application. Key Engineering Materials, 2015, 666, 1-16.	0.4	23
103	Multifunctional Analysis of Innovative PCM-filled Concretes. Energy Procedia, 2017, 111, 81-90.	1.8	23
104	On Innovative Cool-Colored Materials for Building Envelopes: Balancing the Architectural Appearance and the Thermal-Energy Performance in Historical Districts. Sustainability, 2017, 9, 2319.	1.6	23
105	Simulating the Thermal-Energy Performance of Buildings at the Urban Scale: Evaluation of Inter-Building Effects in Different Urban Configurations. Journal of Urban Technology, 2014, 21, 3-20.	2.5	22
106	Outdoor Thermal and Visual Perception of Natural Cool Materials for Roof and Urban Paving. Procedia Engineering, 2015, 118, 1325-1332.	1.2	22
107	Translucent marbles for building envelope applications: Weathering effects on surface lightness and finishing when exposed to simulated acid rain. Construction and Building Materials, 2016, 108, 146-153.	3.2	22
108	Trends and gaps in global research of greenery systems through a bibliometric analysis. Sustainable Cities and Society, 2021, 65, 102608.	5.1	22

#	Article	IF	CITATIONS
109	For the mitigation of urban heat island and urban noise island: two simultaneous sides of urban discomfort. Environmental Research Letters, 2020, 15, 103004.	2.2	22
110	A novel methodology for human thermal comfort decoding via physiological signals measurement and analysis. Building and Environment, 2022, 222, 109385.	3.0	22
111	The Experience of International Sustainability Protocols for Retrofitting Historical Buildings in Italy. Buildings, 2017, 7, 52.	1.4	21
112	Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e294.	1.9	21
113	Human-centric green building design: the energy saving potential of occupants' behaviour enhancement in the office environment. Journal of Building Performance Simulation, 2020, 13, 621-644.	1.0	21
114	Assessing users' willingness-to-engagement towards Net Zero Energy communities in Italy. Renewable and Sustainable Energy Reviews, 2021, 152, 111627.	8.2	21
115	A New Wearable System for Sensing Outdoor Environmental Conditions for Monitoring Hyper-Microclimate. Sensors, 2022, 22, 502.	2.1	21
116	Cool Marble Building Envelopes: The Effect of Aging on Energy Performance and Aesthetics. Sustainability, 2016, 8, 753.	1.6	20
117	Traditional and Innovative Materials for Energy Efficiency in Buildings. Key Engineering Materials, 0, 678, 14-34.	0.4	19
118	On an innovative approach for microclimate enhancement and retrofit of historic buildings and artworks preservation by means of innovative thin envelope materials. Journal of Cultural Heritage, 2019, 36, 222-231.	1.5	19
119	Life Cycle Assessment on Different Synthetic Routes of ZIF-8 Nanomaterials. Energies, 2021, 14, 4998.	1.6	19
120	Quantifying the effects of interior surface reflectance on indoor lighting. Energy Procedia, 2017, 134, 306-316.	1.8	18
121	Thermo-acoustic performance of green roof substrates in dynamic hygrothermal conditions. Energy and Buildings, 2018, 178, 140-153.	3.1	18
122	Effect of PCM on the Hydration Process of Cement-Based Mixtures: A Novel Thermo-Mechanical Investigation. Materials, 2018, 11, 871.	1.3	18
123	Humans in the city: Representing outdoor thermal comfort in urban canopy models. Renewable and Sustainable Energy Reviews, 2020, 133, 110103.	8.2	18
124	Human-centric microclimate analysis of Urban Heat Island: Wearable sensing and data-driven techniques for identifying mitigation strategies in New York City. Urban Climate, 2020, 34, 100716.	2.4	18
125	Palm oil for seasonal thermal energy storage applications in buildings: The potential of multiple melting ranges in blends of bio-based fatty acids. Journal of Energy Storage, 2020, 29, 101431.	3.9	18
126	Pocket parks for human-centered urban climate change resilience: Microclimate field tests and multi-domain comfort analysis through portable sensing techniques and citizens' science. Energy and Buildings, 2022, 260, 111918.	3.1	18

#	Article	IF	CITATIONS
127	The NEXT.ROOM: Design principles and systems trials of a novel test room aimed at deepening our knowledge on human comfort. Building and Environment, 2022, 211, 108744.	3.0	17
128	Dynamic Thermal-energy Performance Analysis of a Prototype Building with Integrated Phase Change Materials. Energy Procedia, 2015, 81, 82-88.	1.8	16
129	Combined Thermal Effect of Cool Roof and Cool Façade on a Prototype Building. Energy Procedia, 2015, 78, 1556-1561.	1.8	16
130	Necessary Conditions for Multi-Domain Indoor Environmental Quality Standards. Sustainability, 2020, 12, 8439.	1.6	16
131	Life cycle assessment and life cycle costing of an innovative component for refrigeration units. Journal of Cleaner Production, 2021, 295, 126442.	4.6	16
132	TIAR: Renewable Energy Production, Storage and Distribution; A New Multidisciplinary Approach for the Design of Rural Facility. Energy Procedia, 2014, 45, 323-332.	1.8	15
133	Intra-urban microclimate mapping for citizens' wellbeing: Novel wearable sensing techniques and automatized data-processing. Journal of Cleaner Production, 2021, 279, 123748.	4.6	15
134	Thermo-acoustic and mechanical characterization of novel bio-based plasters: The valorisation of lignin as by-product from biomass extraction for green building applications. Construction and Building Materials, 2021, 278, 122373.	3.2	15
135	Thermal comfort in the historical urban canyon: the effect of innovative materials. Energy Procedia, 2017, 134, 151-160.	1.8	14
136	Development of photoluminescent composites for energy efficiency in smart outdoor lighting applications: An experimental and numerical investigation. Renewable Energy, 2021, 172, 1-15.	4.3	14
137	Exploring the potential of photoluminescence for urban passive cooling and lighting applications: A new approach towards materials' optimization. Energy, 2021, 231, 120815.	4.5	14
138	Subjective thermal response driving indoor comfort perception: A novel experimental analysis coupling building information modelling and virtual reality. Journal of Building Engineering, 2021, 41, 102368.	1.6	14
139	Energy Refurbishment of Historical Buildings with Public Function: Pilot Case Study. Energy Procedia, 2014, 61, 660-663.	1.8	13
140	Mobile measurements of microclimatic variables through the central area of Singapore: An analysis from the pedestrian perspective. Sustainable Cities and Society, 2022, 83, 103986.	5.1	13
141	A Batch Digester Plant for Biogas Production and Energy Enhancement of Organic Residues from Collective Activities. Energy Procedia, 2014, 61, 1669-1672.	1.8	12
142	An Innovative Small Sized Anaerobic Digester Integrated in Historic Building. Energy Procedia, 2014, 45, 333-341.	1.8	12
143	High-albedo roof coatings for reducing building cooling needs. , 2015, , 243-268.		12
144	Lignocellulosic Ethanol Production from the Recovery of Stranded Driftwood Residues. Energies, 2016, 9, 634.	1.6	12

#	Article	IF	CITATIONS
145	Integrated numerical and experimental methodology for thermal-energy analysis and optimization of heritage museum buildings. Building Services Engineering Research and Technology, 2016, 37, 334-354.	0.9	12
146	Cool, Translucent Natural Envelope: Thermal-optics Characteristics Experimental Assessment and Thermal-energy and Day Lighting Analysis. Energy Procedia, 2017, 111, 578-587.	1.8	12
147	Uses of dynamic simulation to predict thermalâ€energy performance of buildings and districts: a review. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e269.	1.9	12
148	Greenery System for Cooling Down Outdoor Spaces: Results of an Experimental Study. Sustainability, 2020, 12, 5888.	1.6	12
149	Coupling the transient plane source method with a dynamically controlled environment to study PCM-doped building materials. Energy and Buildings, 2018, 180, 122-134.	3.1	11
150	Durability and weatherability of a styrene-ethylene-butylene-styrene (SEBS) block copolymer-based sensing skin for civil infrastructure applications. Sensors and Actuators A: Physical, 2019, 293, 269-280.	2.0	11
151	Cool, photoluminescent paints towards energy consumption reductions in the built environment. Journal of Physics: Conference Series, 2019, 1343, 012198.	0.3	11
152	Using bio-oils for improving environmental performance of an advanced resinous binder for pavement applications with heat and noise island mitigation potential. Sustainable Energy Technologies and Assessments, 2020, 39, 100706.	1.7	11
153	Innovative concretes for low-carbon constructions: a review. International Journal of Low-Carbon Technologies, 2016, , .	1.2	10
154	A Cost-Effective Human-Based Energy-Retrofitting Approach. , 2017, , 219-255.		10
155	A Mobile Vehicle-Based Methodology for Dynamic Microclimate Analysis. International Journal of Environmental Research, 2021, 15, 893-901.	1.1	10
156	Analysis of thermal energy storage tanks and PV panels combinations in different buildings controlled through model predictive control. Energy, 2022, 239, 122201.	4.5	10
157	Network of buildings' impact on indoor thermal performance. Smart and Sustainable Built Environment, 2012, 1, 73-86.	2.2	9
158	Natural, bio-based, colored linoleum: Design, preparation, characteristics and preliminary life cycle assessment. Journal of Cleaner Production, 2020, 267, 122202.	4.6	9
159	Wearable sensing techniques to understand pedestrian-level outdoor microclimate affecting heat related risk in urban parks. Solar Energy, 2022, 242, 397-412.	2.9	9
160	Could a bio-resin and transparent pavement improve the urban environment? An in field thermo-optical investigation and life-cycle assessment. Sustainable Cities and Society, 2022, 79, 103597.	5.1	9
161	Combined Effect of Outdoor Microclimate Boundary Conditions on Air Conditioning System's Efficiency and Building Energy Demand in Net Zero Energy Settlements. Sustainability, 2020, 12, 6056.	1.6	8
162	Zero energy concept at neighborhood level: A case study analysis. Solar Energy Advances, 2021, 1, 100002.	1.2	8

#	Article	IF	CITATIONS
163	Integration of structural performance and human-centric comfort monitoring in historical building information modeling. Automation in Construction, 2022, 138, 104220.	4.8	8
164	Simulating the effect of urban morphology on indoor thermal behavior: An Italian case study. , 2013, , .		7
165	Investigation of the impact of subjective and physical parameters on the indoor comfort of occupants: a case study in central Italy. Energy Procedia, 2017, 126, 131-138.	1.8	7
166	Thermal-energy and Environmental Impact of Cool Clay Tiles for Residential Buildings in Italy. Procedia Engineering, 2015, 118, 530-537.	1.2	6
167	Experimental and Numerical Study on Thermal Performance of New Cool Clay Tiles in Residential Buildings in Europe. Energy Procedia, 2015, 75, 1393-1398.	1.8	6
168	Sustainable New Brick and Thermo-Acoustic Insulation Panel from Mineralization of Stranded Driftwood Residues. Energies, 2016, 9, 619.	1.6	6
169	Driftwood Biomass in Italy: Estimation and Characterization. Sustainability, 2016, 8, 725.	1.6	6
170	Measurement and Verification of Zero Energy Settlements: Lessons Learned from Four Pilot Cases in Europe. Sustainability, 2020, 12, 9783.	1.6	6
171	Data collected by coupling fix and wearable sensors for addressing urban microclimate variability in an historical Italian city. Data in Brief, 2020, 29, 105322.	0.5	6
172	Experimental Winter Monitoring of a Light-Weight Green Roof Assembly for Building Retrofit. Sustainability, 2021, 13, 4604.	1.6	6
173	Integrated energy performance of an innovative translucent photoluminescent building envelope for lighting energy storage. Sustainable Cities and Society, 2021, 75, 103234.	5.1	6
174	Binding Materials for MOF Monolith Shaping Processes: A Review towards Real Life Application. Energies, 2022, 15, 1489.	1.6	6
175	From social science surveys to building energy modeling:â€< Investigating user-building interaction for low-carbon heating solutions in Europe. Energy Reports, 2022, 8, 7188-7199.	2.5	6
176	Effect of optimized photoluminescence on luminous and passive cooling potential: A new combined experimental and numerical approach applied to yellow-emitting glass tiles. Renewable Energy, 2022, 196, 28-39.	4.3	6
177	Simulating the impact of building occupant peer networks on inter-building energy consumption. , 2011, , .		4
178	Smart cool mortar for passive cooling of historical and existing buildings: experimental analysis and dynamic simulation. Energy Procedia, 2017, 134, 536-544.	1.8	4
179	A study on the thermo-optical behaviour of phosphorescent coatings for passive cooling applications. E3S Web of Conferences, 2021, 238, 06002.	0.2	4
180	Strain-sensing smart bricks under dynamic environmental conditions: Experimental investigation and new modeling. Construction and Building Materials, 2022, 336, 127375.	3.2	4

0

#	Article	IF	CITATIONS
181	Investigating the Dynamic Thermal Behavior of Building Envelope in Summer Conditions By Means of in-Field Continuous Monitoring. American Journal of Engineering and Applied Sciences, 2016, 9, 505-519.	0.3	3
182	Nanotech-Based Cool Materials for Building Energy Efficiency. , 2016, , 245-278.		3
183	Are years-long field studies about window operation efficient? a data-driven approach based on information theory and deep learning. Energy and Buildings, 2022, 268, 112197.	3.1	3
184	Optic-Energy Performance of Innovative and Traditional Materials for Roof Covering in Commercial Buildings in Central Italy. Advanced Materials Research, 0, 884-885, 685-688.	0.3	2
185	Durability assessment of soft elastomeric capacitor skin for SHM of wind turbine blades. , 2018, , .		2
186	Life cycle assessment of a novel fired smart clay brick monitoring system for masonry buildings. Sustainable Energy Technologies and Assessments, 2022, 50, 101745.	1.7	2
187	Energetic Analysis of Solar-Supplied Processes for Methane, Biogas and Wood Chip Production. Advanced Materials Research, 0, 772, 720-724.	0.3	1
188	Optical Characterization of Translucent Stone Subject to Degradation. Smart Sensors, Measurement and Instrumentation, 2018, , 233-240.	0.4	1
189	Passive cooling by means of adaptive cool materials. , 2021, , 439-457.		1
190	Life Cycle Assessment of an Innovative Technology against Late Frosts in Vineyard. Sustainability, 2021, 13, 5562.	1.6	1
191	ON THE IMPACT OF COOL ROOFS IN ITALIAN RESIDENTIAL BUILDINGS: EXPERIMENTAL ASSESSMENT OF SUMMER AND WINTER PERFORMANCE. , 2012, , .		1
192	The ecological momentary assessment approach and the use of big data to analyse possible effects of urbanisation on mental health. European Psychiatry, 2021, 64, S10-S11.	0.1	1
193	Influence of microclimate boundary conditions in net zero energy settlements on HVAC efficiency. IOP Conference Series: Materials Science and Engineering, 2019, 609, 072046.	0.3	0
194	Effect of thermochromic coatings on the indoor thermal behavior of a case study building. E3S Web of Conferences, 2021, 238, 06003.	0.2	0
195	Cool Materials for Passive Cooling in Buildings. , 2021, , 505-537.		0
196	Existing Buildings' Energy Upgrade: An Economical and Environmentally Sustainable Opportunity. CSR, Sustainability, Ethics & Governance, 2013, , 265-280.	0.2	0
197	Passive TES With PCM. , 2022, , 438-452.		0

198 Luminescence for the built environment. , 2022, , 47-69.