Ai-Min Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4563159/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Applied Catalysis B: Environmental, 2013, 132-133, 245-255.	10.8	212
2	Catalytic reduction of NO by CO over NiO/CeO2 catalyst in stoichiometric NO/CO and NO/CO/O2 reaction. Applied Catalysis B: Environmental, 2008, 81, 141-149.	10.8	136
3	Low-concentration formaldehyde removal from air using a cycled storage–discharge (CSD) plasma catalytic process. Chemical Engineering Science, 2011, 66, 3922-3929.	1.9	133
4	Conversion of greenhouse gases into syngas via combined effects of discharge activation and catalysis. Chemical Engineering Journal, 2010, 156, 601-606.	6.6	131
5	MnxCo3â^'xO4 solid solution as high-efficient catalysts for low-temperature oxidation of formaldehyde. Catalysis Communications, 2012, 28, 18-22.	1.6	130
6	CO Oxidation Activity at Room Temperature over Au/CeO ₂ Catalysts: Disclosure of Induction Period and Humidity Effect. ACS Catalysis, 2014, 4, 3481-3489.	5.5	125
7	Photocatalytic Formaldehyde Oxidation over Plasmonic Au/TiO ₂ under Visible Light: Moisture Indispensability and Light Enhancement. ACS Catalysis, 2017, 7, 6514-6524.	5.5	121
8	Low-temperature steam reforming of methanol to produce hydrogen over various metal-doped molybdenum carbide catalysts. International Journal of Hydrogen Energy, 2014, 39, 258-266.	3.8	116
9	Ni-modified Mo2C catalysts for methane dry reforming. Applied Catalysis A: General, 2012, 431-432, 164-170.	2.2	114
10	Methane conversion to C2 hydrocarbons and hydrogen in atmospheric non-thermal plasmas generated by different electric discharge techniques. Catalysis Today, 2004, 98, 617-624.	2.2	113
11	Enhanced effect of water vapor on complete oxidation of formaldehyde in air with ozone over MnOx catalysts at room temperature. Journal of Hazardous Materials, 2012, 239-240, 362-369.	6.5	111
12	A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2. Journal of Molecular Catalysis A, 2013, 378, 82-90.	4.8	108
13	Catalytic formaldehyde removal by "storage-oxidation―cycling process over supported silver catalysts. Chemical Engineering Journal, 2012, 200-202, 729-737.	6.6	94
14	A comparative study of the catalytic oxidation of HCHO and CO over Mn0.75Co2.25O4 catalyst: The effect of moisture. Applied Catalysis B: Environmental, 2014, 160-161, 542-551.	10.8	85
15	In-situ synthesis of nickel modified molybdenum carbide catalyst for dry reforming of methane. Catalysis Communications, 2011, 12, 803-807.	1.6	78
16	Removal of formaldehyde from gas streams via packed-bed dielectric barrier discharge plasmas. Journal Physics D: Applied Physics, 2005, 38, 4160-4167.	1.3	76
17	Visible-light photocatalytic oxidation of CO over plasmonic Au/TiO 2 : Unusual features of oxygen plasma activation. Applied Catalysis B: Environmental, 2016, 188, 48-55.	10.8	75
18	Three-dimensional ordered mesoporous Co–Mn oxide: A highly active catalyst for "storage–oxidation―cycling for the removal of formaldehyde. Catalysis Communications, 2013, 36, 52-57.	1.6	71

#	Article	IF	CITATIONS
19	On the catalytic nature of VN, Mo2N, and W2N nitrides for NO reduction with hydrogen. Applied Catalysis A: General, 2004, 276, 223-230.	2.2	70
20	High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal. Catalysis Today, 2017, 281, 527-533.	2.2	64
21	In situ FT-IR study and evaluation of toluene abatement in different plasma catalytic systems over metal oxides loaded Î ³ -Al2O3. Catalysis Communications, 2016, 84, 61-66.	1.6	63
22	The simultaneous activation of methane and carbon dioxide to C2 hydrocarbons under pulse corona plasma over La2O3/γ-Al2O3 catalyst. Catalysis Today, 2002, 72, 223-227.	2.2	62
23	Plasma-assisted selective catalytic reduction of NO by C2H2 over Co-HZSM-5 catalyst. Catalysis Communications, 2006, 7, 297-301.	1.6	61
24	Pressurization effect on dry reforming of biogas in kilohertz spark-discharge plasma. International Journal of Hydrogen Energy, 2012, 37, 4945-4954.	3.8	60
25	Synthesis, characterization and activity of alumina-supported cobalt nitride for NO decomposition. Journal of Solid State Chemistry, 2007, 180, 2635-2640.	1.4	59
26	Inherent rate constants and humidity impact factors of anatase TiO 2 film in photocatalytic removal of formaldehyde from air. Chemical Engineering Journal, 2015, 279, 897-903.	6.6	59
27	Warm plasma catalytic reforming of biogas in a heat-insulated reactor: Dramatic energy efficiency and catalyst auto-reduction. Chemical Engineering Journal, 2016, 288, 671-679.	6.6	57
28	Conversion of NO in NO/N2, NO/O2/N2, NO/C2H4/N2 and NO/C2H4/O2/N2 Systems by Dielectric Barrier Discharge Plasmas. Plasma Chemistry and Plasma Processing, 2005, 25, 371-386.	1.1	56
29	Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams. Journal Physics D: Applied Physics, 2006, 39, 3603-3608.	1.3	54
30	Plasma chain catalytic reforming of methanol for on-board hydrogen production. Chemical Engineering Journal, 2019, 369, 245-252.	6.6	52
31	High-efficiency plasma catalytic removal of dilute benzene from air. Journal Physics D: Applied Physics, 2009, 42, 225105.	1.3	49
32	Determination of vibrational and rotational temperatures in a gliding arc discharge by using overlapped molecular emission spectra. Journal Physics D: Applied Physics, 2013, 46, 345201.	1.3	49
33	Atmospheric-pressure O2 plasma treatment of Au/TiO2 catalysts for CO oxidation. Catalysis Today, 2015, 256, 142-147.	2.2	49
34	Carbon dioxide reforming of methane in kilohertz sparkâ€discharge plasma at atmospheric pressure. AICHE Journal, 2011, 57, 2854-2860.	1.8	48
35	Kinetic study on visible-light photocatalytic removal of formaldehyde from air over plasmonic Au/TiO 2. Catalysis Today, 2017, 281, 630-635.	2.2	48
36	A combined DRIFTS and MS study on reaction mechanism of NO reduction by CO over NiO/CeO2 catalyst. Applied Catalysis B: Environmental, 2009, 90, 395-404.	10.8	47

#	Article	IF	CITATIONS
37	Synergy between β-Mo2C Nanorods and Non-thermal Plasma for Selective CO2 Reduction to CO. CheM, 2020, 6, 3312-3328.	5.8	47
38	Kinetics study on carbon dioxide reforming of methane in kilohertz spark-discharge plasma. Chemical Engineering Journal, 2015, 264, 445-452.	6.6	45
39	Non-thermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst. Catalysis Today, 2013, 211, 96-103.	2.2	44
40	Radio-frequency H2 plasma treatment of AuPd/TiO2 catalyst for selective hydrogenation of acetylene in excess ethylene. Catalysis Today, 2015, 256, 161-169.	2.2	44
41	In-situ regeneration of Au nanocatalysts by atmospheric-pressure air plasma: Significant contribution of water vapor. Applied Catalysis B: Environmental, 2015, 179, 69-77.	10.8	44
42	In-situ plasma regeneration of deactivated Au/TiO2 nanocatalysts during CO oxidation and effect of N2 content. Applied Catalysis B: Environmental, 2012, 119-120, 49-55.	10.8	43
43	Observations of H3â^' and D3â^' from dielectric barrier discharge plasmas. Chemical Physics Letters, 2003, 377, 512-518.	1.2	42
44	Formation of NOx from N2 and O2 in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure. Chemical Communications, 2003, , 1418.	2.2	42
45	Modulating effects of the low-frequency source on ion energy distributions in a dual frequency capacitively coupled plasma. Applied Physics Letters, 2008, 93, 031504.	1.5	42
46	Atmospheric-pressure plasma CVD of TiO ₂ photocatalytic films using surface dielectric barrier discharge. Journal Physics D: Applied Physics, 2009, 42, 032001.	1.3	41
47	Plasma-promoted Au/TiO2 nanocatalysts for photocatalytic formaldehyde oxidation under visible-light irradiation. Catalysis Today, 2019, 337, 132-138.	2.2	39
48	A novel process of ozone catalytic oxidation for low concentration formaldehyde removal. Chinese Journal of Catalysis, 2017, 38, 1759-1769.	6.9	38
49	Diagnosis of dielectric barrier discharge CH4 plasmas for diamond-like carbon film deposition. Diamond and Related Materials, 2002, 11, 1491-1495.	1.8	35
50	Ozone catalytic oxidation of adsorbed benzene over AgMn/HZSM-5 catalysts at room temperature. Catalysis Science and Technology, 2014, 4, 2589-2598.	2.1	35
51	Ozone catalytic oxidation of benzene over AgMn/HZSM-5 catalysts at room temperature: Effects of Mn loading and water content. Chinese Journal of Catalysis, 2014, 35, 1465-1474.	6.9	34
52	Novel power-to-syngas concept for plasma catalytic reforming coupled with water electrolysis. Chemical Engineering Journal, 2018, 353, 297-304.	6.6	34
53	Atmospheric Cold Plasmas for Synthesizing Nanocrystalline Anatase TiO ₂ using Dielectric Barrier Discharges. Plasma Processes and Polymers, 2007, 4, 574-582.	1.6	33
54	Enhanced effect of plasma on catalytic reduction of CO 2 to CO with hydrogen over Au/CeO 2 at low temperature. Journal of Energy Chemistry, 2017, 26, 488-493.	7.1	33

#	Article	IF	CITATIONS
55	Determination of the OH radical in atmospheric pressure dielectric barrier discharge plasmas using near infrared cavity ring-down spectroscopy. European Physical Journal D, 2008, 48, 365-373.	0.6	32
56	Oxidative dehydrogenation of ethane with CO2 over catalyst under pulse corona plasma. Catalysis Today, 2004, 89, 97-102.	2.2	31
57	Methane conversion in low-temperature plasma. High Energy Chemistry, 2009, 43, 156-162.	0.2	31
58	Gold stabilized on various oxide supports catalyzing formaldehyde oxidation at room temperature. Chinese Journal of Catalysis, 2016, 37, 1729-1737.	6.9	31
59	Temporal evolution characteristics of an annular-mode gliding arc discharge in a vortex flow. Physics of Plasmas, 2014, 21, 053507.	0.7	30
60	Oxidative pyrolysis reforming of methanol in warm plasma for an on-board hydrogen production. International Journal of Hydrogen Energy, 2017, 42, 13617-13624.	3.8	30
61	Ozone Catalytic Oxidation of HCHO in Air over MnOx at Room Temperature. Chinese Journal of Catalysis, 2012, 33, 396-401.	6.9	29
62	Renewable and high-concentration syngas production from oxidative reforming of simulated biogas with low energy cost in a plasma shade. Chemical Engineering Journal, 2013, 234, 240-246.	6.6	29
63	Coupling of methane under pulse corona plasma (I). Science in China Series B: Chemistry, 2000, 43, 208-214.	0.8	28
64	Stable kilohertz spark discharges for high-efficiency conversion of methane to hydrogen and acetylene. Journal Physics D: Applied Physics, 2008, 41, 175203.	1.3	28
65	CO ₂ conversion, utilisation and valorisation in gliding arc plasma reactors. Journal Physics D: Applied Physics, 2020, 53, 253001.	1.3	28
66	NO Reduction with Hydrogen over Cobalt Molybdenum Nitride and Molybdenum Nitride: A Comparison Study. Catalysis Letters, 2004, 97, 9-16.	1.4	27
67	Plasma Catalytic Oxidation of Stored Benzene in a Cycled Storage-Discharge (CSD) Process: Catalysts, Reactors and Operation Conditions. Plasma Chemistry and Plasma Processing, 2011, 31, 799-810.	1.1	26
68	Catalytic activities of tungsten nitride for NO dissociation and reduction with hydrogen. Catalysis Today, 2004, 93-95, 819-826.	2.2	25
69	Catalytic performance of Ag–Co/CeO2 catalyst in NO–CO and NO–CO–O2 system. Catalysis Communications, 2007, 8, 612-618.	1.6	25
70	Steam reforming of tar derived from lignin over pompom-like potassium-promoted iron-based catalysts formed on calcined scallop shell. Bioresource Technology, 2013, 139, 280-284.	4.8	25
71	A promising visible-light photocatalyst: H2 plasma-activated amorphous-TiO2-supported Au nanoparticles. Journal of Catalysis, 2019, 375, 380-388.	3.1	25
72	Optimized mixed reforming of biogas with O2 addition in spark-discharge plasma. International Journal of Hydrogen Energy, 2012, 37, 16916-16924.	3.8	24

АІ-МІN ΖНИ

#	Article	IF	CITATIONS
73	Crystalline, Uniform-Sized TiO2 Nanosphere Films by a Novel Plasma CVD Process at Atmospheric Pressure and Room Temperature. Chemical Vapor Deposition, 2007, 13, 141-144.	1.4	23
74	Catalytic Materials for Low Concentration VOCs Removal through "Storageâ€Regeneration―Cycling. ChemCatChem, 2019, 11, 3646-3661.	1.8	23
75	Facile and Fast Deposition of Amorphous Ti <scp>O</scp> ₂ Film under Atmospheric Pressure and at Room Temperature, and its High Photocatalytic Activity under <scp>UV</scp> â€ <scp>C</scp> Light. Chemical Vapor Deposition, 2014, 20, 8-13.	1.4	22
76	Methanol steam reforming by heat-insulated warm plasma catalysis for efficient hydrogen production. Catalysis Today, 2019, 337, 76-82.	2.2	22
77	Catalytic activities and surface properties of zeolite-supported molybdenum nitrides for NO reduction with H2. Applied Catalysis A: General, 2005, 293, 83-90.	2.2	21
78	Atomic hydrogen determination in medium-pressure microwave discharge hydrogen plasmas via emission actinometry. Plasma Sources Science and Technology, 2005, 14, 76-82.	1.3	21
79	A process for a high yield of aromatics from the oxygen-free conversion of methane: combining plasma with Ni/HZSM-5 catalysts. Green Chemistry, 2007, 9, 647.	4.6	21
80	Cycled storage-discharge (CSD) plasma catalytic removal of benzene over AgMn/HZSM-5 using air as discharge gas. Catalysis Science and Technology, 2016, 6, 3788-3796.	2.1	21
81	Plasma catalytic steam methane reforming for distributed hydrogen production. Catalysis Today, 2019, 337, 69-75.	2.2	21
82	Effect of CO2/CH4 ratio on biogas reforming with added O2 through an unique spark-shade plasma. International Journal of Hydrogen Energy, 2014, 39, 13902-13908.	3.8	20
83	In situ DRIFTS study during C2H4-SCR of NO over Co-ZSM-5. Journal of Molecular Catalysis A, 2009, 312, 31-39.	4.8	19
84	Post-plasma catalytic oxidative CO2 reforming of methane over Ni-based catalysts. Catalysis Today, 2015, 256, 96-101.	2.2	19
85	Warm-plasma catalytic reduction of CO2 with CH4. Catalysis Today, 2019, 330, 54-60.	2.2	19
86	Experimental investigation of ion energy distributions in a dual frequency capacitively coupled Ar/CF4 plasma. Physics of Plasmas, 2010, 17, 033501.	0.7	18
87	Exceptional activity for photocatalytic mineralization of formaldehyde over amorphous titania nanofilms. Chemical Engineering Journal, 2016, 306, 1001-1009.	6.6	18
88	Redox Properties of Cobalt Nitrides for NO Dissociation and Reduction. Catalysis Letters, 2009, 130, 63-71.	1.4	17
89	Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate. Chinese Journal of Catalysis, 2016, 37, 2053-2058.	6.9	17
90	In Situ Regeneration of Au Nanocatalysts by Atmospheric-Pressure Air Plasma: Regeneration Characteristics of Square-Wave Pulsed Plasma. Topics in Catalysis, 2017, 60, 914-924.	1.3	17

#	Article	IF	CITATIONS
91	Boosting low-temperature water gas shift reaction over Au/TiO2 nanocatalyst activated by oxygen plasma. Chemical Engineering Journal, 2022, 430, 133013.	6.6	17
92	Gliding Arc Plasma Synthesis of Crystalline TiO2 Nanopowders with High Photocatalytic Activity. Plasma Chemistry and Plasma Processing, 2013, 33, 827-838.	1.1	16
93	Gliding Arc Plasma Synthesis of Visibleâ€Light Active Câ€Doped Titania Photocatalysts. Plasma Processes and Polymers, 2015, 12, 422-430.	1.6	16
94	?Beyond-thermal-equilibrium? conversion of methane to acetylene and hydrogen under pulsed corona discharge. Science in China Series B: Chemistry, 2002, 45, 426.	0.8	15
95	Plasma oxidation for achieving supported TiO2photocatalysts derived from adsorbed TiCl4using dielectric barrier discharge. Journal Physics D: Applied Physics, 2007, 40, 1763-1768.	1.3	15
96	Effect of O2/CH4 ratio on the optimal specific-energy-input (SEI) for oxidative reforming of biogas in a plasma-shade reactor. Journal of Energy Chemistry, 2013, 22, 681-684.	7.1	15
97	Influence of the low-frequency source parameters on the plasma characteristics in a dual frequency capacitively coupled plasma reactor: Two dimensional simulations. Progress in Natural Science: Materials International, 2009, 19, 677-684.	1.8	14
98	TiO2-supported Au-Ag plasmonic nanocatalysts achieved by plasma restructuring and activation. Journal of Hazardous Materials, 2021, 402, 123508.	6.5	14
99	Pulsed Streamer Discharge Plasma over Ni/HZSM-5 Catalysts for Methane Conversion to Aromatics at Atmospheric Pressure. Plasma Processes and Polymers, 2007, 4, 15-18.	1.6	13
100	Low-temperature NO x Selective Reduction by Hydrocarbons on H-Mordenite Catalysts in Dielectric Barrier Discharge Plasma. Plasma Chemistry and Plasma Processing, 2009, 29, 43-53.	1.1	13
101	In situ DRIFTS study on the partial oxidation of ethylene over Co-ZSM-5 catalyst. Catalysis Communications, 2009, 10, 428-432.	1.6	13
102	Uniformity, Structure, and Photocatalytic Activity of TiO ₂ Films Deposited by Atmosphericâ€Pressure Linear Cold Plasma. Chemical Vapor Deposition, 2012, 18, 309-314.	1.4	13
103	An energy-efficient catalytic process for the tandem removal of formaldehyde and benzene by metal/HZSM-5 catalysts. Catalysis Science and Technology, 2015, 5, 4968-4972.	2.1	13
104	Disclosure of water roles in gliding arc plasma reforming of methanol for hydrogen production. Plasma Processes and Polymers, 2020, 17, 2000069.	1.6	12
105	Measurement of OH Radicals in Dielectric Barrier Discharge Plasmas by Cavity Ring-Down Spectroscopy. Plasma Science and Technology, 2010, 12, 166-171.	0.7	11
106	Nonâ€ŧhermal Effect of Atmosphericâ€₽ressure RF Cold Plasma on Photocatalytic Activity of Asâ€deposited TiO ₂ Film. Chemical Vapor Deposition, 2012, 18, 121-125.	1.4	11
107	Plasma catalytic removal of VOCs using cycled storage-discharge (CSD) mode: An assessment methodology based on toluene for reaction kinetics and intermediates. Chemical Engineering Journal, 2022, 433, 134338.	6.6	11
108	EXPERIMENTAL STUDY OF SPATIAL NON-UNIFORMITIES IN A DUAL FREQUENCY CAPACITIVELY COUPLED PLASMA. Modern Physics Letters B, 2009, 23, 3409-3417.	1.0	10

#	Article	IF	CITATIONS
109	A Green Process for High-Concentration Ethylene and Hydrogen Production from Methane in a Plasma-Followed-by-Catalyst Reactor. Plasma Science and Technology, 2011, 13, 77-81.	0.7	10
110	Tuning Effect of N ₂ on Atmospheric-Pressure Cold Plasma CVD of TiO ₂ Photocatalytic Films. Plasma Science and Technology, 2013, 15, 64-69.	0.7	10
111	Absolute CF2 density and gas temperature measurements by absorption spectroscopy in dual-frequency capacitively coupled CF4/Ar plasmas. Physics of Plasmas, 2014, 21, 103501.	0.7	10
112	"Storage-oxidation―cycling process for indoor benzene removal at room temperature. Catalysis Today, 2017, 297, 193-200.	2.2	10
113	Determination of atomic hydrogen in non-thermal hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 1159-1166.	0.7	9
114	Determination of the HO ₂ radical in dielectric barrier discharge plasmas using near-infrared cavity ring-down spectroscopy. Journal Physics D: Applied Physics, 2008, 41, 045203.	1.3	9
115	Copper Oxide Clusters Stabilized by Ceria for CO, C3H6, and NO Abatement. Chinese Journal of Catalysis, 2012, 33, 1455-1462.	6.9	9
116	Effect of ammoniaâ€derived species on visibleâ€light photocatalytic activity of Au supported on amorphous TiO ₂ activated by plasma. Plasma Processes and Polymers, 2018, 15, 1800095.	1.6	9
117	Insight into gliding arc (GA) plasma reduction of CO ₂ with H ₂ : GA characteristics and reaction mechanism. Journal Physics D: Applied Physics, 2019, 52, 284001.	1.3	9
118	Diagnosis of hydrogen ions (H+, , , HÂ) from the near-electrode region of dielectric barrier discharge plasmas. Journal Physics D: Applied Physics, 2004, 37, 1185-1189.	1.3	8
119	Plasma Uniformity in a Dual Frequency Capacitively Coupled Plasma Reactor Measured by Optical Emission Spectroscopy. Plasma Science and Technology, 2011, 13, 61-67.	0.7	8
120	Optical Emission Spectroscopy Diagnosis on Decomposition of NO in NO/N2 Mixtures in Dielectric Barrier Discharge Plasma. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2005, 21, 1352-1356.	2.2	8
121	Combination of CH4 oxidative coupling reaction with C2H6 oxidative dehydrogenation by CO2 to C2H4. Fuel, 2002, 81, 1593-1597.	3.4	7
122	Determination of atomic hydrogen density in non-thermal hydrogen plasmas via emission actinometry. Journal Physics D: Applied Physics, 2007, 40, 4185-4191.	1.3	7
123	A Carbide Catalyst Effective for the Dry Reforming of Methane at Atmospheric Pressure. ACS Symposium Series, 2010, , 181-196.	0.5	7
124	Enhanced Low-Temperature Activity of Ag-Promoted Co-ZSM-5 for the CH4-SCR of NO. Catalysis Letters, 2011, 141, 207-212.	1.4	7
125	Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas. Plasma Science and Technology, 2013, 15, 511-515.	0.7	7
126	Semi-transparent nanofilms of plasmonic Au/TiO2 for visible-light photocatalysis. Materials Chemistry and Physics, 2022, 280, 125773.	2.0	7

#	Article	IF	CITATIONS
127	Selective catalytic reduction of NOxin dielectric barrier discharge plasmas. EPJ Applied Physics, 2005, 30, 129-133.	0.3	6
128	High yield of aromatics from CH4in a plasma-followed-by-catalyst (PFC) reactor. AICHE Journal, 2006, 52, 3321-3324.	1.8	6
129	Oxygen-Free Conversion of Methane to Ethylene in a Plasma-Followed-by-Catalyst (PFC) Reactor. Plasma Science and Technology, 2008, 10, 600-604.	0.7	6
130	Dynamic Evolution of 50-Hz Rotating Gliding Arc Discharge in a Vortex Air Flow. IEEE Transactions on Plasma Science, 2014, 42, 2704-2705.	0.6	6
131	Evaluation of plasma-derived heat and synergistic effect for in-plasma catalytic steam reforming of methanol. Journal Physics D: Applied Physics, 2020, 53, 104003.	1.3	6
132	Realâ€ŧime measurement of axial temperature in a coaxial dielectric barrier discharge reactor and synergistic effect evaluation for inâ€plasma catalytic CO ₂ reduction. Plasma Processes and Polymers, 2022, 19, .	1.6	6
133	The reactions and composition of the surface intermediate species in the selective catalytic reduction of NO x with ethylene over Co-ZSM-5. Research on Chemical Intermediates, 2007, 33, 549-566.	1.3	5
134	Ozone catalytic oxidation for ammonia removal from simulated air at room temperature. Catalysis Science and Technology, 2015, 5, 2227-2237.	2.1	5
135	An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas. Journal of Applied Physics, 2015, 117, .	1.1	5
136	Dimensionless factors for an alternating-current non-thermal arc plasma. Physics of Plasmas, 2016, 23, 120707.	0.7	5
137	Plasmochemical Approach to Templateâ€Free Synthesis of Highly Crystalline Mesoporous TiO ₂ within Milliseconds. ChemNanoMat, 2019, 5, 403-406.	1.5	5
138	Understanding arc behaviors and achieving the optimal mode in a magnetically-driven gliding arc plasma. Plasma Sources Science and Technology, 2020, 29, 015022.	1.3	5
139	Observations of long-lived Hâ~'2and Dâ~'2ions from non-thermal plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40, 921-933.	0.6	4
140	The Role of Active Sites of CoH-ZSM-5 Catalysts for the C2H4-SCR of NO. Catalysis Letters, 2010, 135, 182-189.	1.4	4
141	Spectroscopy diagnostic of dual-frequency capacitively coupled CHF3/Ar plasma. Physics of Plasmas, 2013, 20, .	0.7	4
142	Caudal autotomy and regeneration of arc in a 3D gliding arc discharge plasma. Journal Physics D: Applied Physics, 2021, 54, 305203.	1.3	4
143	Diagnosis of negative hydrogen ions and rovibrational distribution of H2 molecule in non-thermal plasmas. European Physical Journal D, 2008, 46, 103-109.	0.6	3
144	The Nature of Active Sites of Co/Al2O3 for the Selective Catalytic Reduction of NO with C2H4. Catalysis Letters, 2009, 133, 134-141.	1.4	3

АІ-МІЛ ΖНИ

#	Article	IF	CITATIONS
145	Enhanced effect of a plasmaâ€irradiated titanium substrate on the photocatalytic activity of a TiO ₂ film. Plasma Processes and Polymers, 2018, 15, 1700223.	1.6	3
146	Chemical Kinetics of the Removal of Formaldehyde in Dielectric Barrier Discharges. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2007, 23, 1425-1431.	2.2	3
147	Determination of Plasma Parameters in a Dual-Frequency Capacitively Coupled CF ₄ Plasma Using Optical Emission Spectroscopy. Plasma Science and Technology, 2013, 15, 885-890.	0.7	2
148	Mesoporous TiO ₂ electrocatalysts synthesized by gliding arc plasma for oxygen evolution reaction. Journal Physics D: Applied Physics, 2021, 54, 484003.	1.3	2
149	Numerical Simulation of·OH and HO ₂ · Radicals in Dielectric Barrier Discharge Plasmas. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2008, 24, 1400-1404.	2.2	2
150	Polysilicon Prepared from SiCl4by Atmospheric-Pressure Non-Thermal Plasma. Plasma Science and Technology, 2011, 13, 567-570.	0.7	1
151	Diagnosis of Emission Spectra on Chemical Vapor Deposition of TiO ₂ System with Atmospheric-Pressure Radio Frequency Plasma. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2013, 29, 625-630.	2.2	1
152	Study on Coupling of Methane under Pulse Corona Plasma in the Presence of Oxygen. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2000, 16, 839-843.	2.2	1
153	Plasma-induced Conversion of Nitrogen Oxides in a Dielectric Barrier Discharge Reactor. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2005, 21, 192-196.	2.2	1
154	Phase resolved optical emission spectroscopy of dual frequency capacitively coupled plasma. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 205208.	0.2	1
155	Preparation of TiO _{<i>x</i>} /î³-Al ₂ O ₃ Catalyst on Powdery γ-Al ₂ O ₃ by Using Reactive Sputtering Deposition. Chinese Physics Letters, 1999, 16, 426-427.	1.3	0
156	Diagnosis of hydrogen anions (Hâ^',H3â^') from the near-electrode region of dielectric-barrier-discharge plasmas. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2005, 23, 142-145.	0.9	0
157	Regeneration of deactivated Au/TiO <inf>2</inf> nanocatalysts during co oxidation by using in-situ O <inf>2</inf> and N <inf>2</inf> /O <inf>2</inf> plasma. , 2012, , .		0
158	Atmospheric-pressure cold plasma for one-step deposition of TiO <inf>2</inf> photocatalytic films. , 2012, , .		0