
S Knippenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4562993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exhibiting environment sensitive optical properties through multiscale modelling: A study of photoactivatable probes. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 425, 113672.	2.0	2
2	The influence of lipid membranes on fluorescent probes' optical properties. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183494.	1.4	11
3	Multiscale Simulations of Polyzwitterions in Aqueous Bulk Solutions and Brush Array Configurations. Soft Matter, 2021, , .	1.2	8
4	Cyanine dyes with tail length asymmetry enhance photoselection: AÂmultiscale study on DiD probes in a liquid disordered membrane. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 224, 117329.	2.0	8
5	Photoisomerization of DiD: Molecular Dynamics Calculations Reveal the Influence of Tail Lengths. Journal of Physical Chemistry C, 2020, 124, 5829-5837.	1.5	1
6	Push/Pull Effect as Driving Force for Different Optical Responses of Azobenzene in a Biological Environment. Journal of Physical Chemistry C, 2020, 124, 8310-8322.	1.5	11
7	Influence of Membrane Phase on the Optical Properties of DPH. Molecules, 2020, 25, 4264.	1.7	4
8	Conformational Changes as Driving Force for Phase Recognition: The Case of Laurdan. Langmuir, 2019, 35, 11471-11481.	1.6	21
9	Orientational distribution of DPH in lipid membranes: a comparison of molecular dynamics calculations and experimental time-resolved anisotropy experiments. Physical Chemistry Chemical Physics, 2019, 21, 7594-7604.	1.3	13
10	Laurdan as a Molecular Rotor in Biological Environments. ACS Applied Bio Materials, 2019, 2, 5769-5778.	2.3	10
11	Environmental effects on the charge transfer properties of Graphene quantum dot based interfaces. International Journal of Quantum Chemistry, 2019, 119, e25882.	1.0	8
12	Combining (Non)linear Optical and Fluorescence Analysis of DiD To Enhance Lipid Phase Recognition. Journal of Chemical Theory and Computation, 2018, 14, 5350-5359.	2.3	11
13	Atomistic Picture of Fluorescent Probes with Hydrocarbon Tails in Lipid Bilayer Membranes: An Investigation of Selective Affinities and Fluorescent Anisotropies in Different Environmental Phases. Langmuir, 2018, 34, 9072-9084.	1.6	15
14	Triggering On/Off States of Photoswitchable Probes in Biological Environments. Journal of the American Chemical Society, 2017, 139, 4418-4428.	6.6	20
15	Benchmarking Post-Hartree–Fock Methods To Describe the Nonlinear Optical Properties of Polymethines: An Investigation of the Accuracy of Algebraic Diagrammatic Construction (ADC) Approaches. Journal of Chemical Theory and Computation, 2016, 12, 5465-5476.	2.3	13
16	Investigation into Biological Environments through (Non)linear Optics: A Multiscale Study of Laurdan Derivatives. Journal of Chemical Theory and Computation, 2016, 12, 6169-6181.	2.3	25
17	A Blue-Light-Emitting BODIPY Probe for Lipid Membranes. Langmuir, 2016, 32, 3495-3505.	1.6	34
18	Strong Electronic Coupling Dominates the Absorption and Fluorescence Spectra of Covalently Bound BisBODIPYs, Journal of Physical Chemistry A, 2015, 119, 1323-1331	1.1	25

S KNIPPENBERG

#	Article	IF	CITATIONS
19	Self-assembly and hybridization mechanisms of DNA with cationic polythiophene. Soft Matter, 2015, 11, 6460-6471.	1.2	24
20	The cage fragmentation of doubly ionized norbornane: A Born-Oppenheimer molecular dynamics study. Chemical Physics Letters, 2013, 584, 24-29.	1.2	3
21	Synthesis and Optical Properties of Pyrrolo[3,2- <i>b</i>]pyrrole-2,5(1 <i>H</i> ,4 <i>H</i>)-dione (iDPP)-Based Molecules. Journal of Physical Chemistry A, 2013, 117, 2782-2789.	1.1	26
22	The Molecular Mechanism of Photochromism in Photo-Enolizable Quinoline and Napthyridine Derivatives. Journal of Physical Chemistry A, 2012, 116, 12321-12329.	1.1	2
23	Calculations of nonlinear response properties using the intermediate state representation and the algebraic-diagrammatic construction polarization propagator approach: Two-photon absorption spectra. Journal of Chemical Physics, 2012, 136, 064107.	1.2	68
24	Computational design of improved twoâ€photon active caging compounds based on nitrodibenzofuran. Journal of Computational Chemistry, 2012, 33, 1797-1805.	1.5	11
25	The band 12 issue of norbornane: A study of higher shake-up states. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 88, 102-110.	2.0	6
26	Large Amplitude Motions in Cyclopentene and 1-Butene: Quantum Chemical Insights into the Ground- and Excited State Potential Energy Surfaces. Zeitschrift Fur Physikalische Chemie, 2011, 225, 525-539.	1.4	1
27	The conformational stability of gaseous 1-butene studied by femtosecond nonlinear spectroscopy and ab initio calculations. Vibrational Spectroscopy, 2011, 56, 13-18.	1.2	13
28	Simulation of Photoelectron Spectra Using the Reflection Principle in Combination with Unrestricted Excitation ADC(2) to Assess the Accuracy of Excitedâ€State Calculations. ChemPhysChem, 2011, 12, 3180-3191.	1.0	9
29	Ring-puckering motion in cyclopentene studied by time-resolved rotational coherence spectroscopy and ab initio calculations. Physical Chemistry Chemical Physics, 2010, 12, 8190.	1.3	5
30	Correlation effects in the valence ionization spectra of large conjugated molecules: p-Benzoquinone, anthracenequinone and pentacenequinone. Journal of Electron Spectroscopy and Related Phenomena, 2010, 178-179, 61-79.	0.8	10
31	Probing electron correlation and nuclear dynamics in Momentum Space. Journal of Physics: Conference Series, 2010, 212, 012020.	0.3	8
32	Quantum Chemical Study of Conformational Fingerprints in the Photoelectron Spectra and (e, 2e) Electron Momentum Distributions of <i>n</i> -Hexane. Journal of Physical Chemistry A, 2010, 114, 4400-4417.	1.1	33
33	The low-lying excited states of neutral polyacenes and their radical cations: a quantum chemical study employing the algebraic diagrammatic construction scheme of second order. Molecular Physics, 2010, 108, 2801-2813.	0.8	46
34	High resolution electron momentum spectroscopy of the valence orbitals of water. Chemical Physics, 2008, 343, 19-30.	0.9	70
35	Probing molecular conformations in momentum space: The case of n-pentane. Journal of Chemical Physics, 2007, 127, 174306.	1.2	34
36	Imaging Momentum Orbital Densities of Conformationally Versatile Molecules:Â A Benchmark Theoretical Study of the Molecular and Electronic Structures of Dimethoxymethane. Journal of Physical Chemistry A, 2007, 111, 5879-5897.	1.1	39

S KNIPPENBERG

#	Article	IF	CITATIONS
37	Theoretical Study of the Fragmentation Pathways of Norbornane in Its Doubly Ionized Ground State. Journal of Physical Chemistry A, 2007, 111, 10834-10848.	1.1	13
38	Study of the molecular structure, ionization spectrum, and electronic wave function of 1,3-butadiene using electron momentum spectroscopy and benchmark Dyson orbital theories. Journal of Chemical Physics, 2006, 125, 104309.	1.2	56
39	Probing Dyson orbitals with Green's Function theory and Electron Momentum Spectroscopy. Chemical Physics Letters, 2006, 421, 52-57.	1.2	45
40	Green's function study of the one-electron and shake-up ionization spectra of unsaturated hydrocarbon cage compounds. Journal of Computational Chemistry, 2006, 27, 1703-1722.	1.5	21
41	Probing the Shape and Stereochemistry of Molecular Orbitals in Locally Flexible Aromatic Chains:  A Penning Ionization Electron Spectroscopy and Green's Function Study of the Electronic Structure of Biphenyl. Journal of Physical Chemistry A, 2005, 109, 10535-10546.	1.1	28
42	The Band 12 Issue in the Electron Momentum Spectra of Norbornane: A Comparison with Additional Green's Function Calculations and Ultraviolet Photoemission Measurements. Journal of Physical Chemistry A, 2005, 109, 4267-4273.	1.1	19
43	Investigation into the Valence Electronic Structure of Norbornene Using Electron Momentum Spectroscopy, Green's Function, and Density Functional Theories. Journal of Physical Chemistry A, 2005, 109, 9324-9340.	1.1	28
44	Norbornane: An investigation into its valence electronic structure using electron momentum spectroscopy, and density functional and Green's function theories. Journal of Chemical Physics, 2004, 121, 10525-10541.	1.2	43