List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4562592/publications.pdf Version: 2024-02-01

DMITDI

#	Article	IF	CITATIONS
1	The missing memristor found. Nature, 2008, 453, 80-83.	27.8	9,354
2	Memristive devices for computing. Nature Nanotechnology, 2013, 8, 13-24.	31.5	3,019
3	Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature, 2015, 521, 61-64.	27.8	2,235
4	Memristorâ^'CMOS Hybrid Integrated Circuits for Reconfigurable Logic. Nano Letters, 2009, 9, 3640-3645.	9.1	628
5	Switching dynamics in titanium dioxide memristive devices. Journal of Applied Physics, 2009, 106, .	2.5	609
6	Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nature Communications, 2013, 4, 2072.	12.8	501
7	CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology, 2005, 16, 888-900.	2.6	459
8	High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm. Nanotechnology, 2012, 23, 075201.	2.6	447
9	Exponential ionic drift: fast switching and low volatility ofÂthin-film memristors. Applied Physics A: Materials Science and Processing, 2009, 94, 515-519.	2.3	423
10	Coupled Ionic and Electronic Transport Model of Thinâ€Film Semiconductor Memristive Behavior. Small, 2009, 5, 1058-1063.	10.0	286
11	Implementation of multilayer perceptron network with highly uniform passive memristive crossbar circuits. Nature Communications, 2018, 9, 2331.	12.8	281
12	Flexible three-dimensional artificial synapse networks with correlated learning and trainable memory capability. Nature Communications, 2017, 8, 752.	12.8	245
13	Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nature Electronics, 2020, 3, 638-645.	26.0	222
14	3-D Memristor Crossbars for Analog and Neuromorphic Computing Applications. IEEE Transactions on Electron Devices, 2017, 64, 312-318.	3.0	175
15	Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Applied Physics A: Materials Science and Processing, 2012, 107, 509-518.	2.3	169
16	Resistive switching and its suppression in Pt/Nb:SrTiO3 junctions. Nature Communications, 2014, 5, 3990.	12.8	167
17	Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. Nature Communications, 2018, 9, 5311.	12.8	153
18	Hardware-intrinsic security primitives enabled by analogue state and nonlinear conductance variations in integrated memristors. Nature Electronics, 2018, 1, 197-202.	26.0	148

#	Article	IF	CITATIONS
19	Programmable CMOS/Memristor Threshold Logic. IEEE Nanotechnology Magazine, 2013, 12, 115-119.	2.0	142
20	Resistive switching phenomena in thin films: Materials, devices, and applications. MRS Bulletin, 2012, 37, 108-114.	3.5	137
21	Four-dimensional address topology for circuits with stacked multilayer crossbar arrays. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20155-20158.	7.1	134
22	High-Performance Mixed-Signal Neurocomputing With Nanoscale Floating-Gate Memory Cell Arrays. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29, 4782-4790.	11.3	118
23	Fast, energy-efficient, robust, and reproducible mixed-signal neuromorphic classifier based on embedded NOR flash memory technology. , 2017, , .		113
24	Nanoscale Resistive Switching in Amorphous Perovskite Oxide (<i>aâ€</i> SrTiO ₃) Memristors. Advanced Functional Materials, 2014, 24, 6741-6750.	14.9	111
25	Prospects for terabit-scale nanoelectronic memories. Nanotechnology, 2005, 16, 137-148.	2.6	105
26	Roadmap on emerging hardware and technology for machine learning. Nanotechnology, 2021, 32, 012002.	2.6	104
27	The switching location of a bipolar memristor: chemical, thermal and structural mapping. Nanotechnology, 2011, 22, 254015.	2.6	101
28	CMOL: Devices, Circuits, and Architectures. , 2006, , 447-477.		100
29	4K-memristor analog-grade passive crossbar circuit. Nature Communications, 2021, 12, 5198.	12.8	97
30	Electrical transport and thermometry of electroformed titanium dioxide memristive switches. Journal of Applied Physics, 2009, 106, .	2.5	87
31	A reconfigurable architecture for hybrid CMOS/Nanodevice circuits. , 2006, , .		85
32	Current-controlled negative differential resistance due to Joule heating in TiO2. Applied Physics Letters, 2011, 99, .	3.3	78
33	Ionically-Mediated Electromechanical Hysteresis in Transition Metal Oxides. ACS Nano, 2012, 6, 7026-7033.	14.6	75
34	Defect-Tolerant Architectures for Nanoelectronic Crossbar Memories. Journal of Nanoscience and Nanotechnology, 2007, 7, 151-167.	0.9	75
35	Versatile stochastic dot product circuits based on nonvolatile memories for high performance neurocomputing and neurooptimization. Nature Communications, 2019, 10, 5113.	12.8	70
9.6	Smart connections Nature 2011 476 402 405		(0)

36 Smart connections. Nature, 2011, 476, 403-405.

27.8 68

#	Article	IF	CITATIONS
37	Donorâ€Induced Performance Tuning of Amorphous SrTiO ₃ Memristive Nanodevices: Multistate Resistive Switching and Mechanical Tunability. Advanced Functional Materials, 2015, 25, 3172-3182.	14.9	68
38	The area and latency tradeoffs of binary bit-parallel BCH decoders for prospective nanoelectronic memories. , 2006, , .		64
39	A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit. Scientific Reports, 2017, 7, 42429.	3.3	64
40	Efficient training algorithms for neural networks based on memristive crossbar circuits. , 2015, , .		63
41	Optimized stateful material implication logic for three-dimensional data manipulation. Nano Research, 2016, 9, 3914-3923.	10.4	62
42	Hybrid CMOS/memristor circuits. , 2010, , .		57
43	Mechanical Control of Electroresistive Switching. Nano Letters, 2013, 13, 4068-4074.	9.1	55
44	Modeling and Experimental Demonstration of a Hopfield Network Analog-to-Digital Converter with Hybrid CMOS/Memristor Circuits. Frontiers in Neuroscience, 2015, 9, 488.	2.8	52
45	Reconfigurable Hybrid CMOS/Nanodevice Circuits for Image Processing. IEEE Nanotechnology Magazine, 2007, 6, 696-710.	2.0	43
46	Phenomenological modeling of memristive devices. Applied Physics A: Materials Science and Processing, 2015, 118, 779-786.	2.3	42
47	Temperature-insensitive analog vector-by-matrix multiplier based on 55 nm NOR flash memory cells. , 2017, , .		41
48	Endurance-write-speed tradeoffs in nonvolatile memories. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	36
49	3D CMOS-memristor hybrid circuits. , 2012, , .		33
50	Mellow writes. Computer Architecture News, 2016, 44, 519-531.	2.5	32
51	Hybrid CMOS/nanodevice circuits for high throughput pattern matching applications. , 2011, , .		30
52	Race Logic: A hardware acceleration for dynamic programming algorithms. , 2014, , .		30
53	Lightweight Integrated Design of PUF and TRNG Security Primitives Based on eFlash Memory in 55-nm CMOS. IEEE Transactions on Electron Devices, 2020, 67, 1586-1592.	3.0	30
54	Redesigning commercial floating-gate memory for analog computing applications. , 2015, , .		29

DMITRI

#	Article	IF	CITATIONS
55	SpongeDirectory. , 2014, , .		28
56	Manhattan rule training for memristive crossbar circuit pattern classifiers. , 2015, , .		28
57	Stateful characterization of resistive switching TiO2 with electron beam induced currents. Nature Communications, 2017, 8, 1972.	12.8	28
58	Energy-Efficient Time-Domain Vector-by-Matrix Multiplier for Neurocomputing and Beyond. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1512-1516.	3.0	28
59	Intrinsic constrains on thermally-assisted memristive switching. Applied Physics A: Materials Science and Processing, 2011, 102, 851-855.	2.3	27
60	Digital-to-analog and analog-to-digital conversion with metal oxide memristors for ultra-low power computing. , 2013, , .		27
61	Mellow Writes: Extending Lifetime in Resistive Memories through Selective Slow Write Backs. , 2016, , .		26
62	Memristive Electronic Synapses Made by Anodic Oxidation. Chemistry of Materials, 2019, 31, 8394-8401.	6.7	26
63	Improving Noise Tolerance of Mixed-Signal Neural Networks. , 2019, , .		24
64	Memristor-based perceptron classifier: Increasing complexity and coping with imperfect hardware. , 2017, , .		22
65	Applications and Techniques for Fast Machine Learning in Science. Frontiers in Big Data, 2022, 5, 787421.	2.9	20
66	High-Throughput Pattern Matching With CMOL FPGA Circuits: Case for Logic-in-Memory Computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2018, 26, 2759-2772.	3.1	19
67	Comprehensive Compact Phenomenological Modeling of Integrated Metal-Oxide Memristors. IEEE Nanotechnology Magazine, 2020, 19, 344-349.	2.0	19
68	Memristors for neural branch prediction. , 2013, , .		18
69	A Behavioral Compact Model for Static Characteristics of 3D NAND Flash Memory. IEEE Electron Device Letters, 2019, 40, 558-561.	3.9	18
70	Efficient Mixed-Signal Neurocomputing Via Successive Integration and Rescaling. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2020, 28, 823-827.	3.1	17
71	Prospects for the development of digital CMOL circuits. , 2007, , .		16
72	RX-PUF: Low Power, Dense, Reliable, and Resilient Physically Unclonable Functions Based on Analog Passive RRAM Crossbar Arrays. , 2018, , .		16

DMITRI

#	Article	IF	CITATIONS
73	An Analog Neuro-Optimizer with Adaptable Annealing Based on $64 ilde{A}-64$ 0T1R Crossbar Circuit. , 2019, , .		15
74	Monolithically stackable hybrid FPGA. , 2010, , .		14
75	Analog-input analog-weight dot-product operation with Ag/a-Si/Pt memristive devices. , 2012, , .		14
76	Tightening grip. Nature Materials, 2018, 17, 293-295.	27.5	14
77	An ultra-low energy internally analog, externally digital vector-matrix multiplier based on NOR flash memory technology. , 2018, , .		14
78	Boosted Race Trees for Low Energy Classification. , 2019, , .		14
79	Intrinsic Bounds for Computing Precision in Memristor-Based Vector-by-Matrix Multipliers. IEEE Nanotechnology Magazine, 2020, 19, 429-435.	2.0	13
80	3D-aCortex: an ultra-compact energy-efficient neurocomputing platform based on commercial 3D-NAND flash memories. Neuromorphic Computing and Engineering, 2021, 1, 014001.	5.9	13
81	A configurable CMOS memory platform for 3D-integrated memristors. , 2015, , .		12
82	Mixed-Signal Vector-by-Matrix Multiplier Circuits Based on 3D-NAND Memories for Neurocomputing. , 2020, , .		12
83	Energy-Efficient Moderate Precision Time-Domain Mixed-Signal Vector-by-Matrix Multiplier Exploiting 1T-1R Arrays. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2020, 6, 18-26.	1.5	12
84	Hardware Security Primitive Exploiting Intrinsic Variability in Analog Behavior of 3-D NAND Flash Memory Array. IEEE Transactions on Electron Devices, 2019, 66, 2158-2164.	3.0	11
85	Utilizing NDR effect to reduce switching threshold variations in memristive devices. Applied Physics A: Materials Science and Processing, 2013, 111, 199-202.	2.3	10
86	Towards the Development of Analog Neuromorphic Chip Prototype with 2.4M Integrated Memristors. , 2019, , .		10
87	Experimental Demonstrations of Security Primitives With Nonvolatile Memories. IEEE Transactions on Electron Devices, 2019, 66, 5050-5059.	3.0	10
88	Combinatorial optimization by weight annealing in memristive hopfield networks. Scientific Reports, 2021, 11, 16383.	3.3	10
89	Race Logic: Abusing Hardware Race Conditions to Perform Useful Computation. IEEE Micro, 2015, 35, 48-57.	1.8	9
90	Low area overhead in-situ training approach for memristor-based classifier. , 2015, , .		9

Low area overhead in-situ training approach for memristor-based classifier. , 2015, , . 90

#	Article	IF	CITATIONS
91	Maximizing stoichiometry control in reactive sputter deposition of TiO2. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	9
92	3D-DPE: A 3D high-bandwidth dot-product engine for high-performance neuromorphic computing. , 2017, , .		9
93	ChipSecure. , 2019, , .		9
94	An ionic bottle for high-speed, long-retention memristive devices. Applied Physics A: Materials Science and Processing, 2011, 102, 1033-1036.	2.3	8
95	Memory Technologies for Neural Networks. , 2015, , .		8
96	Correlation between diode polarization and resistive switching polarity in Pt/TiO ₂ /Pt memristive device. Physica Status Solidi - Rapid Research Letters, 2016, 10, 426-430.	2.4	8
97	3D ReRAM arrays and crossbars: Fabrication, characterization and applications. , 2017, , .		8
98	A Strong Physically Unclonable Function With >2â;⺠CRPs and <1.4% BER Using Passive ReRAM Technology. IEEE Solid-State Circuits Letters, 2020, 3, 182-185.	2.0	8
99	Analog-input analog-weight dot-product operation with Ag/a-Si/Pt memristive devices. , 2012, , .		7
100	A 4-mm2180-nm-CMOS 15-Giga-cell-updates-per-second DNA sequence alignment engine based on asynchronous race conditions. , 2017, , .		6
101	A 2T-1R Cell Array with High Dynamic Range for Mismatch-Robust and Efficient Neurocomputing. , 2020, , .		6
102	Energy efficient computation with asynchronous races. , 2016, , .		5
103	Breaking POps/J Barrier with Analog Multiplier Circuits Based on Nonvolatile Memories. , 2018, , .		5
104	aCortex: An Energy-Efficient Multipurpose Mixed-Signal Inference Accelerator. IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, 2020, 6, 98-106.	1.5	5
105	Mapping of image and network processing tasks on high-throughput CMOL FPGA circuits. , 2012, , .		4
106	Predictive Analysis of 3D ReRAM-Based PUF for Securing the Internet of Things. , 2018, , .		4
107	Capacity, Fidelity, and Noise Tolerance of Associative Spatial-Temporal Memories Based on Memristive Neuromorphic Networks. Frontiers in Neuroscience, 2018, 12, 195.	2.8	4
108	A Defect-Tolerant Architecture for Nanoelectronic Resistive Memories. , 2006, , .		3

#	Article	IF	CITATIONS
109	3D hybrid CMOS/memristor circuits: Basic principle and prospective applications. , 2012, , .		3
110	Thermal Modeling of Resistive Switching Devices. IEEE Transactions on Electron Devices, 2013, 60, 1938-1943.	3.0	3
111	The effect of Ti and O ion implantation on the resistive switching in Pt/TiO2â^'x /Pt devices. Applied Physics A: Materials Science and Processing, 2015, 120, 1599-1603.	2.3	3
112	Utilizing I-V non-linearity and analog state variations in ReRAM-based security primitives. , 2017, , .		3
113	The Impact of Device Uniformity on Functionality of Analog Passively-Integrated Memristive Circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 2021, 68, 4090-4101.	5.4	3
114	Improving Machine Learning Attack Resiliency via Conductance Balancing in Memristive Strong PUFs. IEEE Transactions on Electron Devices, 2022, 69, 1816-1822.	3.0	3
115	Exponential-weight multilayer perceptron. , 2017, , .		2
116	Real Time Flutter Monitoring System for Turbomachinery. , 2004, , 799.		1
117	All-NDR crossbar logic. , 2011, , .		1
118	Mapping of image and network processing tasks on high-throughput CMOL FPGA circuits. , 2012, , .		1
119	Mixed-Signal POp/J Computing with Nonvolatile Memories. , 2018, , .		1
120	Preliminary Results Towards Reinforcement Learning with Mixed-Signal Memristive Neuromorphic Circuits. , 2019, , .		1
121	Mixed-Signal Neuromorphic Processors: Quo Vadis?. , 2019, , .		1
122	Development system for memristor circuits. , 2013, , .		0
123	Experimental and Theoretical Investigation of Minimization of Forming-Induced Variability in Resistive Memory Devices. Materials Research Society Symposia Proceedings, 2015, 1729, 53-58.	0.1	0