List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4562551/publications.pdf Version: 2024-02-01

ΜΑΡΑΑΙ ΟΑΡΟΑΑ

#	Article	IF	CITATIONS
1	Metal-Based Nanoparticles as Antimicrobial Agents: An Overview. Nanomaterials, 2020, 10, 292.	4.1	769
2	Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids and Surfaces B: Biointerfaces, 2011, 86, 158-165.	5.0	222
3	Dual-drug loaded nanoparticles of Epigallocatechin-3-gallate (EGCG)/Ascorbic acid enhance therapeutic efficacy of EGCG in a APPswe/PS1dE9 Alzheimer's disease mice model. Journal of Controlled Release, 2019, 301, 62-75.	9.9	207
4	Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 235-252.	4.3	203
5	Current Research Therapeutic Strategies for Alzheimer's Disease Treatment. Neural Plasticity, 2016, 2016, 1-15.	2.2	200
6	Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5, 394-401.	3.3	196
7	Memantine loaded PLGA PEGylated nanoparticles for Alzheimer's disease: in vitro and in vivo characterization. Journal of Nanobiotechnology, 2018, 16, 32.	9.1	163
8	Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids and Surfaces B: Biointerfaces, 2010, 81, 412-421.	5.0	156
9	Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials, 2019, 9, 821.	4.1	147
10	PLGA nanospheres for the ocular delivery of flurbiprofen: Drug release and interactions. Journal of Pharmaceutical Sciences, 2008, 97, 5306-5317.	3.3	126
11	Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC). Colloids and Surfaces B: Biointerfaces, 2010, 75, 538-542.	5.0	118
12	Design of cationic lipid nanoparticles for ocular delivery: Development, characterization and cytotoxicity. International Journal of Pharmaceutics, 2014, 461, 64-73.	5.2	118
13	Feasibility of Lipid Nanoparticles for Ocular Delivery of Anti-Inflammatory Drugs. Current Eye Research, 2010, 35, 537-552.	1.5	117
14	Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents. Pharmaceutics, 2019, 11, 460.	4.5	115
15	Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo , in vitro and ex vivo studies. International Journal of Pharmaceutics, 2016, 502, 161-169.	5.2	101
16	Sugar-Lowering Drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome—Review of Classical and New Compounds: Part-I. Pharmaceuticals, 2019, 12, 152.	3.8	95
17	Surface engineering of silica nanoparticles for oral insulin delivery: Characterization and cell toxicity studies. Colloids and Surfaces B: Biointerfaces, 2014, 123, 916-923.	5.0	93
18	Preparation and characterization of PEG-coated silica nanoparticles for oral insulin delivery. International Journal of Pharmaceutics, 2014, 473, 627-635.	5.2	91

#	Article	IF	CITATIONS
19	Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 261-270.	4.3	91
20	Physicochemical characterization of epigallocatechin gallate lipid nanoparticles (EGCG-LNs) for ocular instillation. Colloids and Surfaces B: Biointerfaces, 2014, 123, 452-460.	5.0	85
21	Effect of mucoadhesive polymers on the in vitro performance of insulin-loaded silica nanoparticles: Interactions with mucin and biomembrane models. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 118-126.	4.3	85
22	Nanomedicines for the Delivery of Antimicrobial Peptides (AMPs). Nanomaterials, 2020, 10, 560.	4.1	83
23	Release profile and transscleral permeation of triamcinolone acetonide loaded nanostructured lipid carriers (TA-NLC): in vitro and ex vivo studies. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 1034-1041.	3.3	80
24	Role of hydroxypropyl-β-cyclodextrin on freeze-dried and gamma-irradiated PLGA and PLGA–PEG diblock copolymer nanospheres for ophthalmic flurbiprofen delivery. International Journal of Nanomedicine, 2012, 7, 1357.	6.7	80
25	Memantineâ€Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. Small, 2018, 14, 1701808.	10.0	77
26	Current nanotechnology approaches for the treatment and management of diabetic retinopathy. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 307-322.	4.3	72
27	Current advances in the development of novel polymeric nanoparticles for the treatment of neurodegenerative diseases. Nanomedicine, 2020, 15, 1239-1261.	3.3	68
28	Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. International Journal of Nanomedicine, 2015, 10, 609.	6.7	67
29	New potential strategies for Alzheimer's disease prevention: pegylated biodegradable dexibuprofen nanospheres administration to APPswe/PS1dE9. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1171-1182.	3.3	64
30	Improved and Safe Transcorneal Delivery of Flurbiprofen by NLC and NLC-Based Hydrogels. Journal of Pharmaceutical Sciences, 2012, 101, 707-725.	3.3	63
31	Design and optimization of oleanolic/ursolic acid-loaded nanoplatforms for ocular anti-inflammatory applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 521-530.	3.3	60
32	In vitro , ex vivo and in vivo characterization of PLGA nanoparticles loading pranoprofen for ocular administration. International Journal of Pharmaceutics, 2016, 511, 719-727.	5.2	60
33	Epigallocatechin-3-gallate loaded PEGylated-PLGA nanoparticles: A new anti-seizure strategy for temporal lobe epilepsy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1073-1085.	3.3	60
34	Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer's disease: from current to future challenges. Journal of Nanobiotechnology, 2021, 19, 122.	9.1	60
35	Experimental factorial design applied to mucoadhesive lipid nanoparticles via multiple emulsion process. Colloids and Surfaces B: Biointerfaces, 2012, 100, 84-89.	5.0	56
36	PPARγ agonist-loaded PLGA-PEG nanocarriers as a potential treatment for Alzheimer's disease: in vitro and in vivo studies. International Journal of Nanomedicine, 2018, Volume 13, 5577-5590.	6.7	52

#	Article	IF	CITATIONS
37	In Vitro Cytotoxicity of Oleanolic/Ursolic Acids-Loaded in PLGA Nanoparticles in Different Cell Lines. Pharmaceutics, 2019, 11, 362.	4.5	52
38	Design of Nanosuspensions and Freeze-Dried PLGA Nanoparticles as a Novel Approach for Ophthalmic Delivery of Pranoprofen. Journal of Pharmaceutical Sciences, 2014, 103, 3153-3164.	3.3	51
39	Development of fluorometholone-loaded PLGA nanoparticles for treatment of inflammatory disorders of anterior and posterior segments of the eye. International Journal of Pharmaceutics, 2018, 547, 338-346.	5.2	50
40	Flurbiprofen PLGA-PEG nanospheres: Role of hydroxy-β-cyclodextrin on ex vivo human skin permeation and in vivo topical anti-inflammatory efficacy. Colloids and Surfaces B: Biointerfaces, 2013, 110, 339-346.	5.0	49
41	In-situ forming gels containing fluorometholone-loaded polymeric nanoparticles for ocular inflammatory conditions. Colloids and Surfaces B: Biointerfaces, 2019, 175, 365-374.	5.0	49
42	Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon, 2022, 8, e08938.	3.2	48
43	Development of Chitosan/Silver Sulfadiazine/Zeolite Composite Films for Wound Dressing. Pharmaceutics, 2019, 11, 535.	4.5	47
44	Discovery of a Potent Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase with Antioxidant Activity that Alleviates Alzheimer-like Pathology in Old APP/PS1 Mice. Journal of Medicinal Chemistry, 2021, 64, 812-839.	6.4	45
45	Dexibuprofen Biodegradable Nanoparticles: One Step Closer towards a Better Ocular Interaction Study. Nanomaterials, 2020, 10, 720.	4.1	44
46	Trends in Atopic Dermatitis—From Standard Pharmacotherapy to Novel Drug Delivery Systems. International Journal of Molecular Sciences, 2019, 20, 5659.	4.1	43
47	Sugar-Lowering Drugs for Type 2 Diabetes Mellitus and Metabolic Syndrome—Strategies for In Vivo Administration: Part-II. Journal of Clinical Medicine, 2019, 8, 1332.	2.4	43
48	Ocular penetration of fluorometholone-loaded PEG-PLGA nanoparticles functionalized with cell-penetrating peptides. Nanomedicine, 2019, 14, 3089-3104.	3.3	41
49	Development of a Nasal Donepezil-loaded Microemulsion for the Treatment of Alzheimer's Disease: in vitro and ex vivo Characterization. CNS and Neurological Disorders - Drug Targets, 2018, 17, 43-53.	1.4	40
50	Psoriasis: From Pathogenesis to Pharmacological and Nano-Technological-Based Therapeutics. International Journal of Molecular Sciences, 2021, 22, 4983.	4.1	40
51	Validation of a high performance liquid chromatography method for the stabilization of epigallocatechin gallate. International Journal of Pharmaceutics, 2014, 475, 181-190.	5.2	39
52	Design and elaboration of freeze-dried PLGA nanoparticles for the transcorneal permeation of carprofen: Ocular anti-inflammatory applications. Colloids and Surfaces B: Biointerfaces, 2015, 136, 935-943.	5.0	38
53	State-of-the-art polymeric nanoparticles as promising therapeutic tools against human bacterial infections. Journal of Nanobiotechnology, 2020, 18, 156.	9.1	38
54	Comparative Study of Ex Vivo Transmucosal Permeation of Pioglitazone Nanoparticles for the Treatment of Alzheimer's Disease. Polymers, 2018, 10, 316.	4.5	36

#	Article	IF	CITATIONS
55	Biopharmaceutical profile of hydrogels containing pranoprofen-loaded PLGA nanoparticles for skin administration: In vitro , ex vivo and in vivo characterization. International Journal of Pharmaceutics, 2016, 501, 350-361.	5.2	35
56	Ex vivo permeation of carprofen from nanoparticles: A comprehensive study through human, porcine and bovine skin as anti-inflammatory agent. International Journal of Pharmaceutics, 2016, 501, 10-17.	5.2	31
57	Thymol-loaded PLGA nanoparticles: an efficient approach for acne treatment. Journal of Nanobiotechnology, 2021, 19, 359.	9.1	31
58	Development of Lactoferrin-Loaded Liposomes for the Management of Dry Eye Disease and Ocular Inflammation. Pharmaceutics, 2021, 13, 1698.	4.5	28
59	Lipid Nanoparticles for the Posterior Eye Segment. Pharmaceutics, 2022, 14, 90.	4.5	28
60	Penetration of polymeric nanoparticles loaded with an HIV-1 inhibitor peptide derived from GB virus C in a vaginal mucosa model. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 120, 98-106.	4.3	27
61	Optimization, Biopharmaceutical Profile and Therapeutic Efficacy of Pioglitazone-loaded PLGA-PEG Nanospheres as a Novel Strategy for Ocular Inflammatory Disorders. Pharmaceutical Research, 2018, 35, 11.	3.5	27
62	Exudative versus Nonexudative Age-Related Macular Degeneration: Physiopathology and Treatment Options. International Journal of Molecular Sciences, 2022, 23, 2592.	4.1	27
63	Surface Functionalization of PLGA Nanoparticles to Increase Transport across the BBB for Alzheimer's Disease. Applied Sciences (Switzerland), 2021, 11, 4305.	2.5	26
64	Development of Halobetasol-loaded nanostructured lipid carrier for dermal administration: Optimization, physicochemical and biopharmaceutical behavior, and therapeutic efficacy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 20, 102026.	3.3	25
65	Optimization of nimesulide-loaded solid lipid nanoparticles (SLN) by factorial design, release profile and cytotoxicity in human Colon adenocarcinoma cell line. Pharmaceutical Development and Technology, 2019, 24, 616-622.	2.4	22
66	Therapeutic Interventions for Countering Leishmaniasis and Chagas's Disease: From Traditional Sources to Nanotechnological Systems. Pathogens, 2019, 8, 119.	2.8	21
67	Development and validation of a high-performance liquid chromatography method for the quantification of ursolic/oleanic acids mixture isolated from Plumeria obtusa. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 983-984, 111-116.	2.3	20
68	Human Skin Permeation Studies with PPARÎ ³ Agonist to Improve Its Permeability and Efficacy in Inflammatory Processes. International Journal of Molecular Sciences, 2017, 18, 2548.	4.1	20
69	Calcium hydroxideâ€loaded PLGA biodegradable nanoparticles as an intracanal medicament. International Endodontic Journal, 2021, 54, 2086-2098.	5.0	20
70	Development of topical eye-drops of lactoferrin-loaded biodegradable nanoparticles for the treatment of anterior segment inflammatory processes. International Journal of Pharmaceutics, 2021, 609, 121188.	5.2	20
71	Development and Characterization of Nanoemulsions for Ophthalmic Applications: Role of Cationic Surfactants. Materials, 2021, 14, 7541.	2.9	20
72	Sirtuins and SIRT6 in Carcinogenesis and in Diet. International Journal of Molecular Sciences, 2019, 20, 4945.	4.1	19

#	Article	IF	CITATIONS
73	Epigallocatechin-3-gallate PEGylated poly(lactic-co-glycolic) acidÂnanoparticles mitigate striatal pathology and motor deficits in 3-nitropropionic acid intoxicated mice. Nanomedicine, 2021, 16, 19-35.	3.3	18
74	Recent Advances on Antitumor Agents-loaded Polymeric and Lipid-based Nanocarriers for the Treatment of Brain Cancer. Current Pharmaceutical Design, 2020, 26, 1316-1330.	1.9	17
75	Effect of cryoprotectants on the reconstitution of silica nanoparticles produced by sol–gel technology. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1001-1007.	3.6	15
76	Surface-Modified Multifunctional Thymol-Loaded Biodegradable Nanoparticles for Topical Acne Treatment. Pharmaceutics, 2021, 13, 1501.	4.5	15
77	Development and optimization of Riluzole-loaded biodegradable nanoparticles incorporated in a mucoadhesive in situ gel for the posterior eye segment. International Journal of Pharmaceutics, 2022, 612, 121379.	5.2	15
78	Development of Peptide Targeted PLGA-PEGylated Nanoparticles Loading Licochalcone-A for Ocular Inflammation. Pharmaceutics, 2022, 14, 285.	4.5	15
79	Design, Characterization, and Biopharmaceutical Behavior of Nanoparticles Loaded with an HIV-1 Fusion Inhibitor Peptide. Molecular Pharmaceutics, 2018, 15, 5005-5018.	4.6	14
80	Biodegradable nanoparticles for the treatment of epilepsy: From current advances to future challenges. Epilepsia Open, 2022, 7, .	2.4	14
81	Nanostructured lipid carriers loaded with Halobetasol propionate for topical treatment of inflammation: Development, characterization, biopharmaceutical behavior and therapeutic efficacy of gel dosage forms. International Journal of Pharmaceutics, 2020, 585, 119480.	5.2	13
82	Effect of Different Skin Penetration Promoters in Halobetasol Propionate Permeation and Retention in Human Skin. International Journal of Molecular Sciences, 2017, 18, 2475.	4.1	12
83	Skin-controlled release lipid nanosystems of pranoprofen for the treatment of local inflammation and pain. Nanomedicine, 2018, 13, 2397-2413.	3.3	12
84	State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks. Toxics, 2021, 9, 195.	3.7	11
85	DABCO-Customized Nanoemulsions: Characterization, Cell Viability and Genotoxicity in Retinal Pigmented Epithelium and Microglia Cells. Pharmaceutics, 2021, 13, 1652.	4.5	11
86	Development of Pranoprofen Loaded Nanostructured Lipid Carriers to Improve Its Release and Therapeutic Efficacy in Skin Inflammatory Disorders. Nanomaterials, 2018, 8, 1022.	4.1	10
87	Comparison of migration disturbance potency of epigallocatechin gallate (EGCG) synthetic analogs and EGCG PEGylated PLGA nanoparticles in rat neurospheres. Food and Chemical Toxicology, 2019, 123, 195-204.	3.6	10
88	Thiazolidinedione as an alternative to facilitate oral administration in geriatric patients with Alzheimer's disease. European Journal of Pharmaceutical Sciences, 2019, 129, 173-180.	4.0	10
89	Mono- and Dicationic DABCO/Quinuclidine Composed Nanomaterials for the Loading of Steroidal Drug: 32 Factorial Design and Physicochemical Characterization. Nanomaterials, 2021, 11, 2758.	4.1	9
90	Permeability, anti-inflammatory and anti-VEGF profiles of steroidal-loaded cationic nanoemulsions in retinal pigment epithelial cells under oxidative stress. International Journal of Pharmaceutics, 2022, 617, 121615.	5.2	7

#	Article	IF	CITATIONS
91	Nano-engineering of ketorolac tromethamine platforms for ocular treatment of inflammatory disorders. Nanomedicine, 2021, 16, 401-414.	3.3	6
92	Retinal Drug Delivery: Rethinking Outcomes for the Efficient Replication of Retinal Behavior. Applied Sciences (Switzerland), 2020, 10, 4258.	2.5	4
93	Skin Permeation of Cacalol, Cacalone and 6-epi-Cacalone Sesquiterpenes from a Nanoemulsion. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	3
94	Stabilization by Nano Spray Dryer of Pioglitazone Polymeric Nanosystems: Development, In Vivo, Ex Vivo and Synchrotron Analysis. Pharmaceutics, 2021, 13, 1751.	4.5	3
95	Diabetic Retinopathy and Ocular Melanoma: How Far We Are?. Applied Sciences (Switzerland), 2020, 10, 2777.	2.5	1