Mary C Farach-Carson

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4562535/mary-c-farach-carson-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

9,815 187 95 55 h-index g-index citations papers 6.1 6.01 11,362 217 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
187	MUC1 and Polarity Markers INADL and SCRIB Identify Salivary Ductal Cells <i>Journal of Dental Research</i> , 2022 , 220345221076122	8.1	O
186	Osteocytic Pericellular Matrix (PCM): Accelerated Degradation under In Vivo Loading and Unloading Conditions Using a Novel Imaging Approach <i>Genes</i> , 2021 , 13,	4.2	1
185	Bringing hydrogel-based craniofacial therapies to the clinic. <i>Acta Biomaterialia</i> , 2021 , 138, 1-1	10.8	1
184	NMR Spectroscopy-Based Metabolomics of Platelets to Analyze Brain Tumors. <i>Reports</i> , 2021 , 4, 32	0.4	O
183	All bone metastases are not created equal: Revisiting treatment resistance in renal cell carcinoma. <i>Journal of Bone Oncology</i> , 2021 , 31, 100399	4.5	3
182	Skeletal Functions of Voltage Sensitive Calcium Channels. <i>Current Osteoporosis Reports</i> , 2021 , 19, 206-2	2 251 4	O
181	Cleavage of the Perlecan-Semaphorin 3A-Plexin A1-Neuropilin-1 (PSPN) Complex by Matrix Metalloproteinase 7/Matrilysin Triggers Prostate Cancer Cell Dyscohesion and Migration. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	3
180	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. <i>Nature Communications</i> , 2021 , 12, 3297	17.4	3
179	Salivary Gland Tissue Engineering to Relieve Xerostomia 2021 , 348-352		
178	Highly glycosylated MUC1 mediates high affinity L-selectin binding at the human endometrial surface. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 50	9.4	1
177	Beyond Colonoscopy: Exploring New Cell Surface Biomarkers for Detection of Early, Heterogenous Colorectal Lesions. <i>Frontiers in Oncology</i> , 2021 , 11, 657701	5.3	1
176	Immunosuppressed Miniswine as a Model for Testing Cell Therapy Success: Experience With Implants of Human Salivary Stem/Progenitor Cell Constructs. <i>Frontiers in Molecular Biosciences</i> , 2021 , 8, 711602	5.6	О
175	SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models. <i>PLoS ONE</i> , 2020 , 15, e0230354	3.7	5
174	Trabecular Bone Deficit and Enhanced Anabolic Response to Re-Ambulation after Disuse in Perlecan-Deficient Skeleton. <i>Biomolecules</i> , 2020 , 10,	5.9	1
173	Regulation of cranial neural crest cell fate by Irf6 and Twist1 interaction. FASEB Journal, 2020, 34, 1-1	0.9	
172	Enhanced Viability for Ex vivo 3D Hydrogel Cultures of Patient-Derived Xenografts in a Perfused Microfluidic Platform. <i>Journal of Visualized Experiments</i> , 2020 ,	1.6	2
171	Flipping the Molecular Switch: Influence of Perlecan and Its Modifiers in the Tumor Microenvironment. <i>Advances in Experimental Medicine and Biology</i> , 2020 , 1245, 133-146	3.6	7

(2017-2020)

170	Perlecan/Hspg2 deficiency impairs bone@ calcium signaling and associated transcriptome in response to mechanical loading. <i>Bone</i> , 2020 , 131, 115078	4.7	12
169	Building a Functional Salivary Gland for Cell-Based Therapy: More than Secretory Epithelial Acini. <i>Tissue Engineering - Part A</i> , 2020 , 26, 1332-1348	3.9	4
168	Medical and Dental Electronic Health Record Reporting Discrepancies in Integrated Patient Care. JDR Clinical and Translational Research, 2020 , 5, 278-283	2.2	7
167	Cabozantinib Reverses Renal Cell Carcinoma-mediated Osteoblast Inhibition in Three-dimensional Coculture and Reduces Bone Osteolysis. <i>Molecular Cancer Therapeutics</i> , 2020 , 19, 1266-1278	6.1	6
166	SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models 2020 , 15, e0230354		
165	SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models 2020 , 15, e0230354		
164	SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models 2020 , 15, e0230354		
163	SULF1 suppresses Wnt3A-driven growth of bone metastatic prostate cancer in perlecan-modified 3D cancer-stroma-macrophage triculture models 2020 , 15, e0230354		
162	Principles of Regenerative Medicine of the Maxillomandibular Region 2019 , 3-11		
161	Perlecan domain I gradients establish stable biomimetic heparin binding growth factor gradients for cell migration in hydrogels. <i>Acta Biomaterialia</i> , 2019 , 97, 385-398	10.8	13
161		10.8 5·7	13 7
	for cell migration in hydrogels. <i>Acta Biomaterialia</i> , 2019 , 97, 385-398 Dynamic Assembly of Human Salivary Stem/Progenitor Microstructures Requires Coordinated []		
160	for cell migration in hydrogels. <i>Acta Biomaterialia</i> , 2019 , 97, 385-398 Dynamic Assembly of Human Salivary Stem/Progenitor Microstructures Requires Coordinated II Integrin-Mediated Motility. <i>Frontiers in Cell and Developmental Biology</i> , 2019 , 7, 224 Reassembly of Functional Human Stem/Progenitor Cells in 3D Culture. <i>Methods in Molecular Biology</i>	5.7	7
160 159	for cell migration in hydrogels. <i>Acta Biomaterialia</i> , 2019 , 97, 385-398 Dynamic Assembly of Human Salivary Stem/Progenitor Microstructures Requires Coordinated II Integrin-Mediated Motility. <i>Frontiers in Cell and Developmental Biology</i> , 2019 , 7, 224 Reassembly of Functional Human Stem/Progenitor Cells in 3D Culture. <i>Methods in Molecular Biology</i> , 2018 , 1817, 19-32	5.7	7
160 159 158	For cell migration in hydrogels. <i>Acta Biomaterialia</i> , 2019 , 97, 385-398 Dynamic Assembly of Human Salivary Stem/Progenitor Microstructures Requires Coordinated II Integrin-Mediated Motility. <i>Frontiers in Cell and Developmental Biology</i> , 2019 , 7, 224 Reassembly of Functional Human Stem/Progenitor Cells in 3D Culture. <i>Methods in Molecular Biology</i> , 2018 , 1817, 19-32 Real-Time Molecular MRI with Hyperpolarized Silicon Particles 2018 , 127-161 Matrilysin/MMP-7 Cleavage of Perlecan/HSPG2 Complexed with Semaphorin 3A Supports	5.7	7 6 1
160 159 158	Dynamic Assembly of Human Salivary Stem/Progenitor Microstructures Requires Coordinated II Integrin-Mediated Motility. Frontiers in Cell and Developmental Biology, 2019, 7, 224 Reassembly of Functional Human Stem/Progenitor Cells in 3D Culture. Methods in Molecular Biology, 2018, 1817, 19-32 Real-Time Molecular MRI with Hyperpolarized Silicon Particles 2018, 127-161 Matrilysin/MMP-7 Cleavage of Perlecan/HSPG2 Complexed with Semaphorin 3A Supports FAK-Mediated Stromal Invasion by Prostate Cancer Cells. Scientific Reports, 2018, 8, 7262 Perlecan/HSPG2: Signaling role of domain IV in chondrocyte clustering with implications for	5·7 1.4 4·9	7 6 1
160 159 158 157	For cell migration in hydrogels. <i>Acta Biomaterialia</i> , 2019 , 97, 385-398 Dynamic Assembly of Human Salivary Stem/Progenitor Microstructures Requires Coordinated II Integrin-Mediated Motility. <i>Frontiers in Cell and Developmental Biology</i> , 2019 , 7, 224 Reassembly of Functional Human Stem/Progenitor Cells in 3D Culture. <i>Methods in Molecular Biology</i> , 2018 , 1817, 19-32 Real-Time Molecular MRI with Hyperpolarized Silicon Particles 2018 , 127-161 Matrilysin/MMP-7 Cleavage of Perlecan/HSPG2 Complexed with Semaphorin 3A Supports FAK-Mediated Stromal Invasion by Prostate Cancer Cells. <i>Scientific Reports</i> , 2018 , 8, 7262 Perlecan/HSPG2: Signaling role of domain IV in chondrocyte clustering with implications for Schwartz-Jampel Syndrome. <i>Journal of Cellular Biochemistry</i> , 2018 , 120, 2138	5·7 1.4 4·9 4·7	7 6 1 17

152	Retraction of "Tunable Plasmonic Nanoprobes for Theranostics of Prostate Cancer". <i>Theranostics</i> , 2017 , 7, 561	12.1	
151	FANTOM5 CAGE profiles of human and mouse samples. <i>Scientific Data</i> , 2017 , 4, 170112	8.2	88
150	Bottom-up assembly of salivary gland microtissues for assessing myoepithelial cell function. <i>Biomaterials</i> , 2017 , 142, 124-135	15.6	19
149	Inflammatory breast cancer: a model for investigating cluster-based dissemination. <i>Npj Breast Cancer</i> , 2017 , 3, 21	7.8	81
148	Primary Salivary Human Stem/Progenitor Cells Undergo Microenvironment-Driven Acinar-Like Differentiation in Hyaluronate Hydrogel Culture. <i>Stem Cells Translational Medicine</i> , 2017 , 6, 110-120	6.9	38
147	Sex Differences and Bone Metastases of Breast, Lung, and Prostate Cancers: Do Bone Homing Cancers Favor Feminized Bone Marrow?. <i>Frontiers in Oncology</i> , 2017 , 7, 163	5.3	15
146	Heralding a new paradigm in 3D tumor modeling. <i>Biomaterials</i> , 2016 , 108, 197-213	15.6	98
145	Neuronal Trans-Differentiation in Prostate Cancer Cells. <i>Prostate</i> , 2016 , 76, 1312-25	4.2	16
144	Tuning Hydrogel Properties to Promote the Assembly of Salivary Gland Spheroids in 3D. <i>ACS Biomaterials Science and Engineering</i> , 2016 , 2, 2217-2230	5.5	23
143	Single molecule force measurements of perlecan/HSPG2: A key component of the osteocyte pericellular matrix. <i>Matrix Biology</i> , 2016 , 50, 27-38	11.4	32
142	Ultrahigh-throughput Generation and Characterization of Cellular Aggregates in Laser-ablated Microwells of Poly(dimethylsiloxane). <i>RSC Advances</i> , 2016 , 6, 8980-8991	3.7	18
141	Biomaterials-based strategies for salivary gland tissue regeneration. <i>Biomaterials Science</i> , 2016 , 4, 592-	6 9 .4	27
140	A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. <i>Biomaterials</i> , 2016 , 77, 164-72	15.6	74
139	Perlecan/HSPG2 and matrilysin/MMP-7 as indices of tissue invasion: tissue localization and circulating perlecan fragments in a cohort of 288 radical prostatectomy patients. <i>Oncotarget</i> , 2016 , 7, 10433-47	3.3	21
138	Tumor Budding: The Name is EMT. Partial EMT. Journal of Clinical Medicine, 2016, 5,	5.1	258
137	Sustained delivery of recombinant human bone morphogenetic protein-2 from perlecan domain I - functionalized electrospun poly (Etaprolactone) scaffolds for bone regeneration. <i>Journal of Experimental Orthopaedics</i> , 2016 , 3, 25	2.3	10
136	Three-dimensional (3D) culture of bone-derived human 786-O renal cell carcinoma retains relevant clinical characteristics of bone metastases. <i>Cancer Letters</i> , 2015 , 365, 89-95	9.9	22
135	Salivary Gland Tissue Engineering and Repair 2015 , 613-623		1

(2014-2015)

134	The role of combined radiation and immunotherapy in breast cancer treatment. <i>Journal of Radiation Oncology</i> , 2015 , 4, 347-354	0.7	2
133	Multilayered, Hyaluronic Acid-Based Hydrogel Formulations Suitable for Automated 3D High Throughput Drug Screening of Cancer-Stromal Cell Cocultures. <i>Advanced Healthcare Materials</i> , 2015 , 4, 1664-74	10.1	36
132	Dissociative and Nondissociative Models for Culture of Human Eccrine Glands for Toxicology Testing and Tissue Engineering Applications. <i>Applied in Vitro Toxicology</i> , 2015 , 1, 187-197	1.3	3
131	Evolution of the perlecan/HSPG2 gene and its activation in regenerating Nematostella vectensis. <i>PLoS ONE</i> , 2015 , 10, e0124578	3.7	14
130	Prostate cancer and neuroendocrine differentiation: more neuronal, less endocrine?. <i>Frontiers in Oncology</i> , 2015 , 5, 37	5.3	49
129	Salivary Gland Tissue Engineering and Future Diagnostics 2015 , 157-185		O
128	A promoter-level mammalian expression atlas. <i>Nature</i> , 2014 , 507, 462-70	50.4	1301
127	TISSUE ENGINEERING PERFUSABLE CANCER MODELS. <i>Current Opinion in Chemical Engineering</i> , 2014 , 3, 112-117	5.4	11
126	A hydrogel-based tumor model for the evaluation of nanoparticle-based cancer therapeutics. <i>Biomaterials</i> , 2014 , 35, 3319-30	15.6	90
125	Three-dimensional in vitro tumor models for cancer research and drug evaluation. <i>Biotechnology Advances</i> , 2014 , 32, 1256-1268	17.8	295
124	Hydrogel-based 3D model of patient-derived prostate xenograft tumors suitable for drug screening. <i>Molecular Pharmaceutics</i> , 2014 , 11, 2040-50	5.6	60
123	Deficiency in perlecan/HSPG2 during bone development enhances osteogenesis and decreases quality of adult bone in mice. <i>Calcified Tissue International</i> , 2014 , 95, 29-38	3.9	21
122	A novel in vivo model for evaluating functional restoration of a tissue-engineered salivary gland. Laryngoscope, 2014 , 124, 456-61	3.6	31
121	Perlecan-containing pericellular matrix regulates solute transport and mechanosensing within the osteocyte lacunar-canalicular system. <i>Journal of Bone and Mineral Research</i> , 2014 , 29, 878-91	6.3	68
120	Hyaluronan: a simple polysaccharide with diverse biological functions. <i>Acta Biomaterialia</i> , 2014 , 10, 155	81708	377
119	Matrilysin/matrix metalloproteinase-7(MMP7) cleavage of perlecan/HSPG2 creates a molecular switch to alter prostate cancer cell behavior. <i>Matrix Biology</i> , 2014 , 36, 64-76	11.4	49
118	Border patrol: insights into the unique role of perlecan/heparan sulfate proteoglycan 2 at cell and tissue borders. <i>Matrix Biology</i> , 2014 , 34, 64-79	11.4	107
117	IL-1[Induces p62/SQSTM1 and represses androgen receptor expression in prostate cancer cells. Journal of Cellular Biochemistry, 2014, 115, 2188-97	4.7	25

116	p62/SQSTM1 is required for cell survival of apoptosis-resistant bone metastatic prostate cancer cell lines. <i>Prostate</i> , 2014 , 74, 149-63	4.2	17
115	RANK- and c-Met-mediated signal network promotes prostate cancer metastatic colonization. <i>Endocrine-Related Cancer</i> , 2014 , 21, 311-26	5.7	62
114	Transcriptional activation by NF B increases perlecan/HSPG2 expression in the desmoplastic prostate tumor microenvironment. <i>Journal of Cellular Biochemistry</i> , 2014 , 115, 1322-33	4.7	25
113	Chaperone properties of pdia3 participate in rapid membrane actions of 1½5-dihydroxyvitamin d3. <i>Molecular Endocrinology</i> , 2013 , 27, 1065-77		12
112	Modeling Ewing sarcoma tumors in vitro with 3D scaffolds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 6500-5	11.5	180
111	Implantable three-dimensional salivary spheroid assemblies demonstrate fluid and protein secretory responses to neurotransmitters. <i>Tissue Engineering - Part A</i> , 2013 , 19, 1610-20	3.9	60
110	Recreating the tumor microenvironment in a bilayer, hyaluronic acid hydrogel construct for the growth of prostate cancer spheroids. <i>Biomaterials</i> , 2012 , 33, 9049-60	15.6	103
109	Improved cellular specificity of plasmonic nanobubbles versus nanoparticles in heterogeneous cell systems. <i>PLoS ONE</i> , 2012 , 7, e34537	3.7	32
108	Hyaluronan (HA) interacting proteins RHAMM and hyaluronidase impact prostate cancer cell behavior and invadopodia formation in 3D HA-based hydrogels. <i>PLoS ONE</i> , 2012 , 7, e50075	3.7	49
107	Hyaluronic Acid-Based Hydrogels: from a Natural Polysaccharide to Complex Networks. <i>Soft Matter</i> , 2012 , 8, 3280-3294	3.6	344
107		3.6 4.1	344 13
	2012, 8, 3280-3294 A control engineering approach to understanding the TGF-[paradox in cancer. Journal of the Royal		13
106	2012, 8, 3280-3294 A control engineering approach to understanding the TGF-[paradox in cancer. <i>Journal of the Royal Society Interface</i> , 2012, 9, 1389-97 Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine	4.1	13
106	A control engineering approach to understanding the TGF-[þaradox in cancer. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 1389-97 Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells. <i>Autophagy</i> , 2012 , 8, 650-63 Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2	4.1	13 53
106 105 104	A control engineering approach to understanding the TGF-[þaradox in cancer. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 1389-97 Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells. <i>Autophagy</i> , 2012 , 8, 650-63 Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis. <i>Biomedical Materials (Bristol)</i> , 2012 , 7, 024109	4.1 10.2 3.5	13 53 51
106105104103	A control engineering approach to understanding the TGF-[þaradox in cancer. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 1389-97 Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells. <i>Autophagy</i> , 2012 , 8, 650-63 Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis. <i>Biomedical Materials (Bristol)</i> , 2012 , 7, 024109 Co-culture of osteocytes and neurons on a unique patterned surface. <i>Biointerphases</i> , 2011 , 6, 200-9	4.1 10.2 3.5 1.8	1353516
106105104103102	A control engineering approach to understanding the TGF-[paradox in cancer. <i>Journal of the Royal Society Interface</i> , 2012 , 9, 1389-97 Interleukin-6: a bone marrow stromal cell paracrine signal that induces neuroendocrine differentiation and modulates autophagy in bone metastatic PCa cells. <i>Autophagy</i> , 2012 , 8, 650-63 Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis. <i>Biomedical Materials (Bristol)</i> , 2012 , 7, 024109 Co-culture of osteocytes and neurons on a unique patterned surface. <i>Biointerphases</i> , 2011 , 6, 200-9 Tunable plasmonic nanoprobes for theranostics of prostate cancer. <i>Theranostics</i> , 2011 , 1, 3-17 A new assay for functional screening of BRCA2 linker region mutations identifies variants that alter	4.1 10.2 3.5 1.8	1353516

(2009-2011)

98	Association of the (᠒)(1) subunit with Ca(v)3.2 enhances membrane expression and regulates mechanically induced ATP release in MLO-Y4 osteocytes. <i>Journal of Bone and Mineral Research</i> , 2011 , 26, 2125-39	6.3	61
97	Tumor necrosis factor-Itreatment of HepG2 cells mobilizes a cytoplasmic pool of ERp57/1,25DEMARRS to the nucleus. <i>Journal of Cellular Biochemistry</i> , 2011 , 112, 2606-15	4.7	19
96	Amphiphilic block co-polyesters bearing pendant cyclic ketal groups as nanocarriers for controlled release of camptothecin. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2011 , 22, 1275-98	3.5	10
95	Rainbow Plasmonic Nanobubbles: Synergistic Activation of Gold Nanoparticle Clusters. <i>Journal of Nanomedicine & Nanotechnology</i> , 2011 , 2, 1-8	1.9	7
94	Effects of 1,25-Dihydroxyvitamin D 3 on Voltage-Sensitive Calcium Channels in Osteoblast Differentiation and Morphology 2011 , 457-467		
93	Effect of HIP/ribosomal protein L29 deficiency on mineral properties of murine bones and teeth. <i>Bone</i> , 2010 , 47, 93-101	4.7	8
92	Lumen formation in three-dimensional cultures of salivary acinar cells. <i>Otolaryngology - Head and Neck Surgery</i> , 2010 , 142, 191-5	5.5	48
91	Hierarchically structured, hyaluronic acid-based hydrogel matrices via the covalent integration of microgels into macroscopic networks. <i>Soft Matter</i> , 2010 , 6, 5045-5055	3.6	51
90	3D Matrices for Anti-Cancer Drug Testing and Development. <i>Oncology Issues</i> , 2010 , 25, 20-25	0.2	73
89	Mining the extracellular matrix for tissue engineering applications. Regenerative Medicine, 2010 , 5, 961	- 7:0 5	48
88	Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model. <i>Biomaterials</i> , 2010 , 31, 5700-18	15.6	107
87	Involvement of 1,25D3-MARRS (membrane associated, rapid response steroid-binding), a novel vitamin D receptor, in growth inhibition of breast cancer cells. <i>Experimental Cell Research</i> , 2010 , 316, 695-703	4.2	36
86	Nuclear translocation of the 1,25D3-MARRS (membrane associated rapid response to steroids) receptor protein and NFkappaB in differentiating NB4 leukemia cells. <i>Experimental Cell Research</i> , 2010 , 316, 1101-8	4.2	48
86 85	receptor protein and NFkappaB in differentiating NB4 leukemia cells. Experimental Cell Research,	4·2 5·4	48 61
	receptor protein and NFkappaB in differentiating NB4 leukemia cells. <i>Experimental Cell Research</i> , 2010 , 316, 1101-8 Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin.		,
85	receptor protein and NFkappaB in differentiating NB4 leukemia cells. <i>Experimental Cell Research</i> , 2010 , 316, 1101-8 Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 1312-20 The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting	5.4	61
8 ₅	receptor protein and NFkappaB in differentiating NB4 leukemia cells. <i>Experimental Cell Research</i> , 2010 , 316, 1101-8 Fiber diameters control osteoblastic cell migration and differentiation in electrospun gelatin. <i>Journal of Biomedical Materials Research - Part A</i> , 2010 , 94, 1312-20 The in vivo performance of plasmonic nanobubbles as cell theranostic agents in zebrafish hosting prostate cancer xenografts. <i>Biomaterials</i> , 2010 , 31, 7567-74 Ribozyme-mediated reduction of wild-type and mutant cartilage oligomeric matrix protein (COMP)	5.4	61

80	Rapamycin selectively reduces the association of transcripts containing complex 5QJTRs with ribosomes in C4-2B prostate cancer cells. <i>Journal of Cellular Biochemistry</i> , 2009 , 107, 473-81	4.7	4
79	Ribosomal protein L29/HIP deficiency delays osteogenesis and increases fragility of adult bone in mice. <i>Journal of Orthopaedic Research</i> , 2009 , 27, 28-35	3.8	19
78	Perlecan domain I-conjugated, hyaluronic acid-based hydrogel particles for enhanced chondrogenic differentiation via BMP-2 release. <i>Biomaterials</i> , 2009 , 30, 6964-75	15.6	90
77	Multifunctionality of extracellular and cell surface heparan sulfate proteoglycans. <i>Cellular and Molecular Life Sciences</i> , 2009 , 66, 3421-34	10.3	75
76	Hyaluronic acid-based hydrogels as 3D matrices for in vitro evaluation of chemotherapeutic drugs using poorly adherent prostate cancer cells. <i>Biomaterials</i> , 2009 , 30, 6076-85	15.6	222
75	Evaluation of cross-linking methods for electrospun gelatin on cell growth and viability. <i>Biomacromolecules</i> , 2009 , 10, 1675-80	6.9	214
74	Microfabricated electrospun collagen membranes for 3-D cancer models and drug screening applications. <i>Biomacromolecules</i> , 2009 , 10, 2019-32	6.9	58
73	Mecp2 deficiency decreases bone formation and reduces bone volume in a rodent model of Rett syndrome. <i>Bone</i> , 2009 , 45, 346-56	4.7	41
72	Quantitative modeling and analysis of the transforming growth factor beta signaling pathway. <i>Biophysical Journal</i> , 2009 , 96, 1733-50	2.9	46
71	A novel peptide sequence in perlecan domain IV supports cell adhesion, spreading and FAK activation. <i>Matrix Biology</i> , 2008 , 27, 150-60	11.4	41
70	Heparanase expression and activity influences chondrogenic and osteogenic processes during endochondral bone formation. <i>Bone</i> , 2008 , 43, 689-99	4.7	33
69	Decidual heparanase activity is increased during pregnancy in the baboon (Papio anubis) and in in vitro decidualization of human stromal cells. <i>Biology of Reproduction</i> , 2008 , 78, 316-23	3.9	6
68	Novel surface expression of reticulocalbin 1 on bone endothelial cells and human prostate cancer cells is regulated by TNF-alpha. <i>Journal of Cellular Biochemistry</i> , 2008 , 104, 2298-309	4.7	27
67	HIP/RPL29 antagonizes VEGF and FGF2 stimulated angiogenesis by interfering with HS-dependent responses. <i>Journal of Cellular Biochemistry</i> , 2008 , 105, 1183-93	4.7	12
66	Potential role for heparan sulfate proteoglycans in regulation of transforming growth factor-beta (TGF-beta) by modulating assembly of latent TGF-beta-binding protein-1. <i>Journal of Biological Chemistry</i> , 2007 , 282, 26418-30	5.4	80
65	Conditional disruption of calcineurin B1 in osteoblasts increases bone formation and reduces bone resorption. <i>Journal of Biological Chemistry</i> , 2007 , 282, 35318-27	5.4	35
64	Coculture with prostate cancer cells alters endoglin expression and attenuates transforming growth factor-beta signaling in reactive bone marrow stromal cells. <i>Molecular Cancer Research</i> , 2007 , 5, 585-603	6.6	27
63	Perlecana multifunctional extracellular proteoglycan scaffold. <i>Glycobiology</i> , 2007 , 17, 897-905	5.8	107

(2005-2007)

62	Heparanase expression and function during early pregnancy in mice. <i>Biology of Reproduction</i> , 2007 , 77, 433-41	3.9	23
61	Regulation of expression of 1,25D3-MARRS/ERp57/PDIA3 in rat IEC-6 cells by TGF beta and 1,25(OH)2D3. <i>Steroids</i> , 2007 , 72, 144-50	2.8	11
60	Coating electrospun collagen and gelatin fibers with perlecan domain I for increased growth factor binding. <i>Biomacromolecules</i> , 2007 , 8, 1116-23	6.9	121
59	Mechanism of 24,25-dihydroxyvitamin D3-mediated inhibition of rapid, 1,25-dihydroxyvitamin D3-induced responses: role of reactive oxygen species. <i>Journal of Cellular Biochemistry</i> , 2006 , 99, 1572-	8 1 ·7	15
58	Osteoblast Ca(2+) permeability and voltage-sensitive Ca(2+) channel expression is temporally regulated by 1,25-dihydroxyvitamin D(3). <i>American Journal of Physiology - Cell Physiology</i> , 2006 , 290, C822-31	5.4	38
57	beta2-microglobulin is a signaling and growth-promoting factor for human prostate cancer bone metastasis. <i>Cancer Research</i> , 2006 , 66, 9108-16	10.1	88
56	Chondrogenic differentiation on perlecan domain I, collagen II, and bone morphogenetic protein-2-based matrices. <i>Tissue Engineering</i> , 2006 , 12, 2009-24		56
55	Ribozyme-mediated perlecan knockdown impairs chondrogenic differentiation of C3H10T1/2 fibroblasts. <i>Differentiation</i> , 2006 , 74, 53-63	3.5	15
54	Hypoxia increases VEGF-A production by prostate cancer and bone marrow stromal cells and initiates paracrine activation of bone marrow endothelial cells. <i>Clinical and Experimental Metastasis</i> , 2006 , 23, 75-86	4.7	23
53	Spatiotemporal distribution of heparan sulfate epitopes during murine cartilage growth plate development. <i>Histochemistry and Cell Biology</i> , 2006 , 126, 713-22	2.4	6
52	Identification and characterization of 1,25D3-membrane-associated rapid response, steroid (1,25D3-MARRS)-binding protein in rat IEC-6 cells. <i>Steroids</i> , 2005 , 70, 458-63	2.8	34
51	Osteogenic differentiation of rat bone marrow stromal cells cultured on Arg-Gly-Asp modified hydrogels without dexamethasone and beta-glycerol phosphate. <i>Biomaterials</i> , 2005 , 26, 3645-54	15.6	103
50	Differentiation-induced loss of heparan sulfate in human exostosis derived chondrocytes. <i>Differentiation</i> , 2005 , 73, 212-21	3.5	43
49	Phosphorylated osteopontin promotes migration of human choriocarcinoma cells via a p70 S6 kinase-dependent pathway. <i>Journal of Cellular Biochemistry</i> , 2005 , 94, 1218-33	4.7	51
48	Expression of voltage sensitive calcium channel (VSCC) L-type Cav1.2 (alpha1C) and T-type Cav3.2 (alpha1H) subunits during mouse bone development. <i>Developmental Dynamics</i> , 2005 , 234, 54-62	2.9	64
47	Perlecan knockdown in metastatic prostate cancer cells reduces heparin-binding growth factor responses in vitro and tumor growth in vivo. <i>Clinical and Experimental Metastasis</i> , 2005 , 22, 377-90	4.7	55
46	Perlecan domain I promotes fibroblast growth factor 2 delivery in collagen I fibril scaffolds. <i>Tissue Engineering</i> , 2005 , 11, 76-89		50
45	Heparan sulfate proteoglycans: key players in cartilage biology. <i>Critical Reviews in Eukaryotic Gene Expression</i> , 2005 , 15, 29-48	1.3	35

44	Effects of 1,25-Dihydroxyvitamin D3 on Voltage-Sensitive Calcium Channels in the Vitamin D Endocrine System 2005 , 751-760		1
43	Perlecan functions in chondrogenesis: insights from in vitro and in vivo models. <i>Cells Tissues Organs</i> , 2004 , 176, 79-86	2.1	28
42	Osteoprotegerin expression and secretion are regulated by calcium influx through the L-type voltage-sensitive calcium channel. <i>Endocrinology</i> , 2004 , 145, 426-36	4.8	47
41	Attachment, proliferation, and migration of marrow stromal osteoblasts cultured on biomimetic hydrogels modified with an osteopontin-derived peptide. <i>Biomaterials</i> , 2004 , 25, 895-906	15.6	135
40	Modulation of differentiation and mineralization of marrow stromal cells cultured on biomimetic hydrogels modified with Arg-Gly-Asp containing peptides. <i>Journal of Biomedical Materials Research Part B</i> , 2004 , 69, 535-43		121
39	Integrating rapid responses to 1,25-dihydroxyvitamin D3 with transcriptional changes in osteoblasts: Ca2+ regulated pathways to the nucleus. <i>Steroids</i> , 2004 , 69, 543-7	2.8	7
38	Identification and characterization of 1,25D3-membrane-associated rapid response, steroid (1,25D3-MARRS) binding protein. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2004 , 89-90, 28	1 ⁵ 5 ¹	74
37	High extracellular calcium attenuates adipogenesis in 3T3-L1 preadipocytes. <i>Experimental Cell Research</i> , 2004 , 301, 280-92	4.2	60
36	HIP/RPL29 down-regulation accompanies terminal chondrocyte differentiation. <i>Differentiation</i> , 2003 , 71, 322-36	3.5	17
35	Steroid hormone interactions with target cells: cross talk between membrane and nuclear pathways. <i>Journal of Pharmacology and Experimental Therapeutics</i> , 2003 , 307, 839-45	4.7	73
34	Chondrogenic activity of the heparan sulfate proteoglycan perlecan maps to the N-terminal domain I. <i>Journal of Bone and Mineral Research</i> , 2002 , 17, 48-55	6.3	61
33	A rapid and simple nonradioactive method for in vitro testing of ribozyme activity. <i>Oligonucleotides</i> , 2002 , 12, 283-8		6
32	Heparan sulfate interacting protein (HIP/L29) negatively regulates growth responses to basic fibroblast growth factor in gingival fibroblasts. <i>Journal of Dental Research</i> , 2002 , 81, 247-52	8.1	12
31	Structure-based design of selective agonists for a rickets-associated mutant of the vitamin d receptor. <i>Journal of the American Chemical Society</i> , 2002 , 124, 13795-805	16.4	60
30	Microarray detection of gene expression changes induced by 1,25(OH)(2)D(3) and a Ca(2+) influx-activating analog in osteoblastic ROS 17/2.8 cells. <i>Steroids</i> , 2002 , 67, 467-70	2.8	33
29	Parathyroid hormone-stimulated resorption in calvaria cultured in serum-free medium is enhanced by the calcium-mobilizing activity of 1,25-dihydroxyvitamin D(3). <i>Bone</i> , 2001 , 29, 231-5	4.7	15
28	Type I collagen-mediated proliferation of PC3 prostate carcinoma cell line: implications for enhanced growth in the bone microenvironment. <i>Matrix Biology</i> , 2001 , 20, 429-37	11.4	57
27	Bioactive analogs that simulate subsets of biological activities of 1alpha,25(OH)(2)D(3) in osteoblasts. <i>Steroids</i> , 2001 , 66, 357-61	2.8	6

26	Calcium signals in prostate cancer cells: specific activation by bone-matrix proteins. <i>Cell Calcium</i> , 2000 , 27, 35-42	4	43
25	Ribozyme ablation demonstrates that the cardiac subtype of the voltage-sensitive calcium channel is the molecular transducer of 1, 25-dihydroxyvitamin D(3)-stimulated calcium influx in osteoblastic cells. <i>Journal of Biological Chemistry</i> , 2000 , 275, 8711-8	5.4	32
24	1,25 dihydroxyvitamin D(3) activates sphingomyelin turnover in ROS17/2.8 osteosarcoma cells without sphingolipid-induced changes in cytosolic Ca(2+). <i>Biochemical and Biophysical Research Communications</i> , 2000 , 273, 95-100	3.4	8
23	Expression of the heparan sulfate proteoglycan, perlecan, during mouse embryogenesis and perlecan chondrogenic activity in vitro. <i>Journal of Cell Biology</i> , 1999 , 145, 1103-15	7.3	128
22	Dual 1,25-dihydroxyvitamin D3 signal response pathways in osteoblasts: cross-talk between genomic and membrane-initiated pathways. <i>American Journal of Kidney Diseases</i> , 1998 , 31, 729-42	7.4	45
21	Membrane receptors for steroid hormones: a case for specific cell surface binding sites for vitamin D metabolites and estrogens. <i>Biochemical and Biophysical Research Communications</i> , 1998 , 248, 443-9	3.4	111
20	Modulation of osteopontin post-translational state by 1, 25-(OH)2-vitamin D3. Dependence on Ca2+ influx. <i>Journal of Biological Chemistry</i> , 1998 , 273, 29935-41	5.4	40
19	Assay of direct effect of 1,25-dihydroxyvitamin D3 on calcium ion influx into cultured osteoblasts. <i>Methods in Enzymology</i> , 1997 , 282, 236-43	1.7	4
18	Effect of agents used in perforation repair on osteoblastic cells. <i>Journal of Endodontics</i> , 1997 , 23, 158-6	14.7	9
17	Differing shapes of 1 alpha,25-dihydroxyvitamin D3 function as ligands for the D-binding protein, nuclear receptor and membrane receptor: a status report. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1996 , 56, 13-22	5.1	43
16	Voltage-sensitive calcium channels in osteoblasts: mediators of plasma membrane signalling events. <i>Connective Tissue Research</i> , 1996 , 35, 107-11	3.3	21
15	Down-regulation of L-type Ca2+ channel transcript levels by 1,25-dihyroxyvitamin D3. Osteoblastic cells express L-type alpha1C Ca2+ channel isoforms. <i>Journal of Biological Chemistry</i> , 1996 , 271, 32981-5	5.4	31
14	Bone matrix proteins in osteogenesis and remodelling in the neonatal rat mandible as studied by immunolocalization of osteopontin, bone sialoprotein, alpha 2HS-glycoprotein and alkaline phosphatase. <i>Archives of Oral Biology</i> , 1995 , 40, 145-55	2.8	48
13	Immunolocalization of osteopontin, osteocalcin, and dentin sialoprotein during dental root formation and early cementogenesis in the rat. <i>Journal of Bone and Mineral Research</i> , 1994 , 9, 833-41	6.3	108
12	Osteopontin-stimulated vascular smooth muscle cell migration is mediated by beta 3 integrin. Experimental Cell Research, 1994 , 214, 459-64	4.2	122
11	Ultrastructural immunolocalization of noncollagenous (osteopontin and osteocalcin) and plasma (albumin and alpha 2HS-glycoprotein) proteins in rat bone. <i>Journal of Bone and Mineral Research</i> , 1993 , 8, 485-96	6.3	156
10	Evidence that a non-RGD domain in rat osteopontin is involved in cell attachment. <i>Journal of Bone and Mineral Research</i> , 1993 , 8, 1499-506	6.3	62
9	Evidence for the formation of a complex between osteopontin and osteocalcin. <i>Journal of Bone and Mineral Research</i> , 1992 , 7, 877-85	6.3	95

8	Isolation, characterization and immunolocalization of a 53-kDal dentin sialoprotein (DSP). <i>Matrix Biology</i> , 1992 , 12, 343-51		122
7	Improved binding of acidic bone matrix proteins to cationized filters during solid phase assays. <i>Bone and Mineral</i> , 1992 , 16, 1-9		3
6	1,25(OH)2-vitamin D3, a steroid hormone that produces biologic effects via both genomic and nongenomic pathways. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 1992 , 41, 231-40	5.1	183
5	Nongenomic actions of 1,25-dihydroxyvitamin D3 in rat osteosarcoma cells: structure-function studies using ligand analogs. <i>Endocrinology</i> , 1991 , 129, 1876-84	4.8	114
4	Identification of the rat bone 60K acidic glycoprotein as alpha 2HS-glycoprotein. <i>Bone and Mineral</i> , 1991 , 13, 1-21		43
3	Immunochemical comparison of transformation-associated protein and secreted phosphoprotein. <i>International Journal of Cancer</i> , 1990 , 46, 864-70	7.5	4
2	Inflammatory Breast Cancer: a model for investigating cluster-based dissemination		1
1	Extracellular Matrix: Structure, Function, and Tissue Engineering Applications3377-3392		