
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4562493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In-Plane Aromaticity in 1,3-Dipolar Cycloadditions. Solvent Effects, Selectivity, and Nucleus-Independent Chemical Shifts. Journal of the American Chemical Society, 1999, 121, 6737-6746.	13.7	222
2	The Mechanism of the Keteneâ^'Imine (Staudinger) Reaction in Its Centennial: Still an Unsolved Problem?. Accounts of Chemical Research, 2008, 41, 925-936.	15.6	188
3	Dyotropic Reactions: Mechanisms and Synthetic Applications. Chemical Reviews, 2009, 109, 6687-6711.	47.7	163
4	A semiempirical theoretical study on the formation of .betalactams from ketenes and imines. Journal of the American Chemical Society, 1993, 115, 995-1004.	13.7	152
5	An Activated Equivalent of Lactide toward Organocatalytic Ring-Opening Polymerization. Journal of the American Chemical Society, 2006, 128, 16442-16443.	13.7	132
6	In-PlaneAromaticity in 1,3-Dipolar Cycloadditions. Journal of Organic Chemistry, 1997, 62, 7033-7036.	3.2	131
7	Aromaticity in transition structures. Chemical Society Reviews, 2014, 43, 4909-4921.	38.1	124
8	Synthesis of a Stable Disilyne Bisphosphine Adduct and Its Nonâ€Metalâ€Mediated CO ₂ Reduction to CO. Angewandte Chemie - International Edition, 2011, 50, 1092-1096.	13.8	122
9	Cul–Fesulphos complexes: efficient chiral catalysts for asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Tetrahedron, 2007, 63, 6587-6602.	1.9	119
10	Catalytic and Solvent Effects on the Cycloaddition Reaction between Ketenes and Carbonyl Compounds To Form 2-Oxetanones. Journal of the American Chemical Society, 1994, 116, 9613-9619.	13.7	113
11	Monomer versus Alcohol Activation in the 4â€Ðimethylaminopyridineâ€Catalyzed Ringâ€Opening Polymerization of Lactide and Lactic <i>O</i> â€Carboxylic Anhydride. Chemistry - A European Journal, 2008, 14, 5304-5312.	3.3	108
12	Origins of the Loss of Concertedness in Pericyclic Reactions:Â Theoretical Prediction and Direct Observation of Stepwise Mechanisms in [3 + 2] Thermal Cycloadditions. Journal of the American Chemical Society, 2000, 122, 6078-6092.	13.7	107
13	Chiral Control in the Staudinger Reaction between Ketenes and Imines. A Theoretical SCF-MO Study on Asymmetric Torquoselectivity. Journal of the American Chemical Society, 1994, 116, 2085-2093.	13.7	104
14	Origins of the Stereodivergent Outcome in the Staudinger Reaction between Acyl Chlorides and Imines. Journal of Organic Chemistry, 1998, 63, 5869-5876.	3.2	104
15	Stereocontrolled Synthesis of Highly Substituted Proline Esters via [3 + 2] Cycloaddition between N-Metalated Azomethine Ylides and Nitroalkenes. Origins of the Metal Effect on the Stereochemical Outcome. Journal of Organic Chemistry, 1998, 63, 1795-1805.	3.2	104
16	A Simple Ring Current Model for Describing In-Plane Aromaticity in Pericyclic Reactions. Journal of Organic Chemistry, 1999, 64, 1868-1874.	3.2	103
17	Reversible Binding of Ethylene to Silylene–Phosphine Complexes at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 10414-10416.	13.8	94
18	Stereodivergent Synthesis of Chiral Fullerenes by [3 + 2] Cycloadditions to C ₆₀ . Journal of the American Chemical Society, 2014, 136, 705-712.	13.7	93

#	Article	IF	CITATIONS
19	Highly stereoselective synthesis of α-hydroxy β-amino acids through β-lactams: application to the synthesis of the taxol and bestatin side chains and related systems Tetrahedron Letters, 1990, 31, 6429-6432.	1.4	91
20	Contribution to the development of new substitution patterns of optically active .betalactams: synthesis of homochiral 4-(1-aminoalkyl)azetidin-2-ones from N-(tert-butyloxycarbonyl) .alphaamino aldehyde-derived imines via asymmetric Staudinger reaction. Journal of the American Chemical Society, 1992, 114, 9360-9369.	13.7	91
21	Synthesis and Structure of a Base‣tabilized <i>C</i> â€Phosphinoâ€ <i>Si</i> â€Amino Silyne. Angewandte Chemie - International Edition, 2010, 49, 6585-6588.	13.8	91
22	Aromaticity and Activation Strain Analysis of [3 + 2] Cycloaddition Reactions between Group 14 Heteroallenes and Triple Bonds. Journal of Organic Chemistry, 2011, 76, 2310-2314.	3.2	86
23	Densely substituted unnatural l- and d-prolines as catalysts for highly enantioselective stereodivergent (3 + 2) cycloadditions and aldol reactions. Chemical Science, 2012, 3, 1486.	7.4	86
24	Solvent-Free Thermal and Microwave-Assisted [3 + 2] Cycloadditions between Stabilized Azomethine Ylides and Nitrostyrenes. An Experimental and Theoretical Study. Journal of Organic Chemistry, 2007, 72, 4313-4322.	3.2	85
25	Modification of Regioselectivity in Cycloadditions to C70under Microwave Irradiation. Journal of Organic Chemistry, 2000, 65, 2499-2507.	3.2	84
26	On the Aromatic Character of Electrocyclic and Pseudopericyclic Reactions: Thermal Cyclization of (2Z)-Hexa-2,4-5-trienals and Their Schiff Bases. Angewandte Chemie - International Edition, 2001, 40, 557-561.	13.8	84
27	Ring-Opening Polymerization ofl-Lactide Initiated by (2-Methacryloxy)ethyloxyâ^'Aluminum Trialkoxides. 1. Kinetics. Macromolecules, 1999, 32, 8252-8258.	4.8	81
28	Hierarchical Selectivity in Fullerenes: Siteâ€, Regioâ€, Diastereoâ€, and Enantiocontrol of the 1,3â€Dipolar Cycloaddition to C ₇₀ . Angewandte Chemie - International Edition, 2011, 50, 6060-6064.	13.8	80
29	Type″ Dyotropic Reactions: Understanding Trends in Barriers. Chemistry - A European Journal, 2012, 18, 12395-12403.	3.3	79
30	Double Group Transfer Reactions: Role of Activation Strain and Aromaticity in Reaction Barriers. Chemistry - A European Journal, 2009, 15, 13022-13032.	3.3	76
31	Efficient tautomerization hydrazone-azomethine imine under microwave irradiation. Synthesis of [4,3′] and [5,3′]bipyrazoles. Tetrahedron, 1998, 54, 13167-13180.	1.9	75
32	Alkenyl Arenes as Dipolarophiles in Catalytic Asymmetric 1,3â€Đipolar Cycloaddition Reactions of Azomethine Ylides. Angewandte Chemie - International Edition, 2016, 55, 15334-15338.	13.8	73
33	Ellipticity: A Convenient Tool To Characterize Electrocyclic Reactions. Chemistry - A European Journal, 2005, 11, 1734-1738.	3.3	71
34	Photochemistry of Group 6 Fischer Carbene Complexes: Beyond the Photocarbonylation Reaction. Accounts of Chemical Research, 2011, 44, 479-490.	15.6	70
35	A Theoreticalâ^'Experimental Approach to the Mechanism of the Photocarbonylation of Chromium(0) (Fischer)â^'Carbene Complexes and Their Reaction with Imines. Journal of the American Chemical Society, 2000, 122, 11509-11510.	13.7	69
36	Enantioselective Ring-Opening Polymerization of <i>rac</i> -Lactide Dictated by Densely Substituted Amino Acids. Journal of the American Chemical Society, 2017, 139, 4805-4814.	13.7	69

#	ARTICLE	IF	CITATIONS
37	On the Stereochemical Outcome of the Catalyzed and Uncatalyzed Cycloaddition Reaction between Activated Ketenes and Aldehydes to form cis- and trans-2-Oxetanones. An ab Initio Study. Journal of the American Chemical Society, 1995, 117, 12314-12321.	13.7	68
38	Direct Evaluation of Secondary Orbital Interactions in the Dielsâ^'Alder Reaction between Cyclopentadiene and Maleic Anhydride. Journal of Organic Chemistry, 2001, 66, 6178-6180.	3.2	68
39	Tandem [8 + 2] Cycloadditionâ^'[2 + 6 + 2] Dehydrogenation Reactions Involving Imidazo[1,2- <i>a</i>]pyridines and Imidazo[1,2- <i>a</i>]pyrimidines. Journal of Organic Chemistry, 2010, 75, 2776-2784.	3.2	66
40	Stable Phosphonium Sila-ylide with Reactivity as a Sila-Wittig Reagent. Journal of the American Chemical Society, 2009, 131, 8762-8763.	13.7	65
41	Phosphoramidite–Cu(OTf)2 Complexes as Chiral Catalysts for 1,3-Dipolar Cycloaddition of Iminoesters and Nitroalkenes. Organic Letters, 2013, 15, 2902-2905.	4.6	64
42	Relevance of the DFT method to study expanded porphyrins with different topologies. Journal of Computational Chemistry, 2017, 38, 2819-2828.	3.3	64
43	Application of Stereocontrolled Stepwise [3+2] Cycloadditions to the Preparation of Inhibitors of α4β1-Integrin-Mediated Hepatic Melanoma Metastasis. Angewandte Chemie - International Edition, 2005, 44, 2903-2907.	13.8	63
44	Mechanism and Stereoselectivity of the Aza-Wittig Reaction between Phosphazenes and Aldehydes. Journal of Organic Chemistry, 2006, 71, 2839-2847.	3.2	63

#	Article	IF	CITATIONS
55	Structure and Conformations of Heteroatom-Substituted Free Carbenes and Their Group 6 Transition Metal Analogues. Organometallics, 2004, 23, 1065-1071.	2.3	53
56	Encapsulated Nâ€Heterocyclic Carbenes in Silicones without Reactivity Modification. Angewandte Chemie - International Edition, 2007, 46, 8632-8635.	13.8	53
57	Microwave-assisted reactions of nitroheterocycles with dienes. Diels–Alder and tandem hetero Diels–Alder/[3,3] sigmatropic shift. Tetrahedron, 2009, 65, 5328-5336.	1.9	53
58	Concerted and Stepwise Mechanisms in Metalâ€Free and Metalâ€Assisted [4+3] Cycloadditions Involving Allyl Cations. Chemistry - A European Journal, 2010, 16, 12147-12157.	3.3	53
59	Computational and experimental tools in solving some mechanistic problems in the chemistry of Fischer carbene complexes. Chemical Communications, 2008, , 4671.	4.1	51
60	Lewis Acid Activated Azaâ€Diels–Alder Reaction of <i>N</i> â€(3â€Pyridyl)aldimines: An Experimental and Computational Study. European Journal of Organic Chemistry, 2010, 2010, 2091-2099.	2.4	51
61	Reagents and synthetic methods. Part 67. Preparation of 4-unsubstituted .betalactams from 4-acetoxyazetidin-2-ones. A formal approach to monobactams and nocardicins. Journal of Organic Chemistry, 1988, 53, 3784-3791.	3.2	46
62	Solvent and Substituent Effects in the Periselectivity of the Staudinger Reaction between Ketenes and α,β-Unsaturated Imines. A Theoretical and Experimental Study. Journal of Organic Chemistry, 1996, 61, 3070-3079.	3.2	46
63	DFT Study on the Dielsâ~'Alder Cycloaddition between Alkenylâ~'M(0) (M = Cr, W) Carbene Complexes and Neutral 1,3-Dienes. Journal of Organic Chemistry, 2008, 73, 2083-2089.	3.2	46
64	Synthesis and Reactivity of a Phosphine-Stabilized Monogermanium Analogue of Alkynes. Journal of the American Chemical Society, 2011, 133, 15930-15933.	13.7	46
65	Enantiodivergent Synthesis of Bis-Spiropyrrolidines via Sequential Interrupted and Completed (3 + 2) Cycloadditions. Journal of Organic Chemistry, 2015, 80, 11755-11767.	3.2	46
66	The Reformatskii type reaction of Gilman and Speeter in the preparation of valuable .betalactams in carbapenem synthesis: scope and synthetic utility. Journal of Organic Chemistry, 1989, 54, 5736-5745.	3.2	45
67	Enhancement of Fluorescence in Thin-Layer Chromatography Induced by the Interaction betweenn-Alkanes and an Organic Cation. Analytical Chemistry, 2000, 72, 1759-1766.	6.5	45
68	Nucleophilic Silylenoid Character of Stable Phosphonium Sila–ylides. Chemistry - A European Journal, 2010, 16, 8255-8258.	3.3	45
69	Binap–Gold(I) versus Binap–Silver Trifluoroacetate Complexes as Catalysts in 1,3â€Đipolar Cycloadditions of Azomethine Ylides. Chemistry - A European Journal, 2011, 17, 14224-14233.	3.3	45
70	Regioselective Preparation of Benzo[<i>b</i>]furans from Phenols and α <i>-</i> Bromoketones. Journal of Organic Chemistry, 2012, 77, 266-275.	3.2	45
71	4M lithium perchlorate-nitromethane: An efficient solvent in Diels-Alder reactions using nitroalkenes as dienophiles. Tetrahedron Letters, 1995, 36, 4447-4450.	1.4	44
72	Mechanism of the Generation of Ketenimineâ^'M(CO)n Complexes (M = Cr, W, Fe) from Fischer Carbenes and Isocyanides. Organometallics, 2007, 26, 3010-3017.	2.3	44

#	Article	IF	CITATIONS
73	On the Stereodivergent Behavior Observed in the Staudinger Reaction between Methoxyketene and (E)-N-Benzylidenearyl Amines. Angewandte Chemie - International Edition, 2007, 46, 3028-3032.	13.8	44
74	Surpassing Torquoelectronic Effects in Conrotatory Ring Closures: Origins of Stereocontrol in Intramolecular Ketenimine-Imine [2+2] Cycloadditions. Chemistry - A European Journal, 1999, 5, 1106-1117.	3.3	43
75	Effect of the Metal Fragment in the Thermal Cycloaddition between Alkynyl Metal(0) Fischer Carbene Complexes and Nitrones. Journal of Organic Chemistry, 2006, 71, 6178-6184.	3.2	43
76	On the Mechanism of Conversion ofN-Acyl-4-acyloxy-β-lactams into 2-Substituted 1,3-Oxazin-6-ones. Can a Low-Barrier Transition State Be Antiaromatic?. Journal of Organic Chemistry, 2001, 66, 8470-8477.	3.2	42
77	Reaction ofN-Vinylic Phosphazenes with α,β-Unsaturated Aldehydes. Azatriene-Mediated Synthesis of Dihydropyridines and Pyridines Derived from β-Amino Acids. Journal of Organic Chemistry, 2006, 71, 6020-6030.	3.2	42
78	Enantioselective Synthesis of Polysubstituted Spiro-nitroprolinates Mediated by a (R,R)-Me-DuPhos·AgF-Catalyzed 1,3-Dipolar Cycloaddition. Organic Letters, 2016, 18, 2926-2929.	4.6	41
79	Highly stereocontrolled synthesis of substituted propiolactones and butyrolactones from achiral lithium enolates and homociral aldehydes. Tetrahedron Letters, 1996, 37, 245-248.	1.4	40
80	Computational and Experimental Studies on the Mechanism of the Photochemical Carbonylation of Group 6 Fischer Carbene Complexes. Chemistry - A European Journal, 2005, 11, 5988-5996.	3.3	40
81	Regiochemistry of the microwave-assisted reaction between aromatic amines and α-bromoketones to yield substituted 1H-indoles. Organic and Biomolecular Chemistry, 2008, 6, 1763.	2.8	40
82	Densely Substituted l-Proline Esters as Catalysts for Asymmetric Michael Additions of Ketones to Nitroalkenes. Journal of Organic Chemistry, 2015, 80, 5588-5599.	3.2	40
83	Substituent and Solvent Effects in the [2 + 2] Cycloaddition Reaction between Olefins and Isocyanates. Journal of the American Chemical Society, 1995, 117, 12306-12313.	13.7	39
84	Highly Efficient Induction of Chirality in Intramolecular [2 + 2] Cycloadditions between Ketenimines and Imines. Journal of Organic Chemistry, 2000, 65, 3633-3643.	3.2	39
85	On the Affinity Regulation of the Metal-Ion-Dependent Adhesion Sites in Integrins. Journal of the American Chemical Society, 2006, 128, 3554-3563.	13.7	39
86	Diastereoselective 1,3â€Dipolar Cycloaddition Reactions between Azomethine Ylides and Chiral Acrylates Derived from Methyl (<i>S</i>)―and (<i>R</i>)â€Lactate – Synthesis of Hepatitis C Virus RNAâ€Dependent RNA Polymerase Inhibitors. European Journal of Organic Chemistry, 2007, 2007, 5038-5049.	2.4	39
87	Formation of γ-Oxoacids and 1 <i>H</i> -Pyrrol-2(5 <i>H</i>)-ones from α,β-Unsaturated Ketones and Ethyl Nitroacetate. Journal of Organic Chemistry, 2010, 75, 7435-7438.	3.2	39
88	Preparation of 3-alkyl .betalactams via the ketene imine cycloaddition reaction using .alpha(phenylthio)alkanoyl halides as starting materials: application to the synthesis of (.+)-carbapenem building blocks and related compounds. Journal of Organic Chemistry, 1991, 56, 4418-4428.	3.2	38
89	<i>Trans</i> -Stereoselectivity in the Reaction between Homophthalic Anhydride and Imines. Organic Letters, 2008, 10, 4759-4762.	4.6	38
90	Towards a more precise therapy in cancer: Exploring epigenetic complexity. Current Opinion in Chemical Biology, 2020, 57, 41-49.	6.1	38

#	Article	IF	CITATIONS
91	New Insights on the Origins of the Stereocontrol of the Staudinger Reaction:Â [2 + 2] Cycloaddition between Ketenes andN-Silylimines. Journal of Organic Chemistry, 2000, 65, 8458-8464.	3.2	37
92	Light-Induced Aminocarbene to Imine Dyotropic Rearrangement in a Chromium(0) Center:  An Unprecedented Reaction Pathway. Journal of the American Chemical Society, 2003, 125, 9572-9573.	13.7	37
93	Stereoelectronic Effects on Type I 1,2-Dyotropic Rearrangements in Vicinal Dibromides. Chemistry - A European Journal, 2006, 12, 6323-6330.	3.3	37
94	Computational calculations in microwave-assisted organic synthesis (MAOS). Application to cycloaddition reactions. Organic and Biomolecular Chemistry, 2010, 8, 1000.	2.8	37
95	N,N-Dimethylphosphoramidic dichloride: a convenient reagent for the preparation of β-lactams from acetic acids and imines. Tetrahedron Letters, 1987, 28, 1945-1948.	1.4	36
96	Preparation of chiral 3-unsubstituted β-lactams from 3-hydroxy β-lactams by using the alkoxyketene-imine cycloaddition reaction as an approach to the azetidinone ring: A formal synthesis of the carbapenem antibiotic (+)-PS-5 Tetrahedron Letters, 1991, 32, 3105-3108.	1.4	35
97	New Stereoselective Intramolecular [2 + 2] Cycloadditions between Ketenimines and Imines on anortho-Benzylic Scaffold:Â 1,4-Asymmetric Induction. Journal of Organic Chemistry, 2000, 65, 7512-7515.	3.2	35
98	Ab Initio Models for the Nitroaldol (Henry) Reaction. Chemistry - A European Journal, 1997, 3, 20-28.	3.3	34
99	Quantitative Evaluation of the Catalytic Activity of Dendrimers with Only One Active Center at the Core:Â Application to the Nitroaldol (Henry) Reaction. Journal of the American Chemical Society, 2004, 126, 5243-5252.	13.7	34
100	Syntheses of β-lactams from acetic acids and imines induced by phenyl dichlorophosphate reagent. Tetrahedron, 1985, 41, 1703-1712.	1.9	33
101	Competitive Mechanisms and Origins of Stereocontrol in the [2 + 2] Thermal Cycloaddition between Imines and Keteniminium Cations. A Complementary Entry to 2-Azetidinones (β-Lactams) and Related Compounds. Journal of Organic Chemistry, 1999, 64, 1831-1842.	3.2	33
102	Organocatalysts Derived from Unnatural αâ€Amino Acids: Scope and Applications. Chemistry - an Asian Journal, 2019, 14, 44-66.	3.3	32
103	Tributyltin hydride addition to nitroalkenes: a convenient procedure for the conversion of nitroalkenes into nitroalkanes and carbonyl compounds. Journal of Organic Chemistry, 1990, 55, 2070-2078.	3.2	31
104	Role of the isomerization pathways in the Staudinger reaction. A theoretical study on the interaction between activated ketenes and imidates. Tetrahedron Letters, 1994, 35, 4465-4468.	1.4	31
105	Berberine Cation:  A Fluorescent Chemosensor for Alkanes and Other Low-Polarity Compounds. An Explanation of This Phenomenon. Organic Letters, 2000, 2, 2311-2313.	4.6	30
106	Cyclic Carbodiphosphorane–Diphosphinocarbene Thermal Interconversion. Angewandte Chemie - International Edition, 2006, 45, 7447-7450.	13.8	30
107	Deeper Insight into the Mechanism of the Reaction of Photogenerated Metallaketenes and Imines. Journal of the American Chemical Society, 2008, 130, 13892-13899.	13.7	30
108	Synthetic applications of chromium(VI) reagents in combination with chlorotrimethylsilane. Canadian Journal of Chemistry, 1986, 64, 225-231.	1.1	29

#	Article	IF	CITATIONS
109	Theoretical Study on the Mechanism of the [2 + 1] Thermal Cycloaddition between Alkenes and Stable Singlet (Phosphino)(silyl)carbenes. Journal of Organic Chemistry, 2007, 72, 357-366.	3.2	29
110	Chiral gold(I) vs chiral silver complexes as catalysts for the enantioselective synthesis of the second generation GSK-hepatitis C virus inhibitor. Beilstein Journal of Organic Chemistry, 2011, 7, 988-996.	2.2	29
111	A Threeâ€Component Enantioselective Cyclization Reaction Catalyzed by an Unnatural Amino Acid Derivative. Angewandte Chemie - International Edition, 2018, 57, 668-672.	13.8	29
112	Switching Diastereoselectivity in Catalytic Enantioselective (3+2) Cycloadditions of Azomethine Ylides Promoted by Metal Salts and Privileged Segphos-Derived Ligands. Journal of Organic Chemistry, 2019, 84, 10593-10605.	3.2	29
113	New stereochemical outcomes in the cycloaddition of acid halides or equivalents to cinnamylideneamines: A concise new approach to 4-acetoxyazetidin-2-ones Tetrahedron Letters, 1986, 27, 4359-4362.	1.4	28
114	Synthetic utility of azetidine-2,3-diones: a new approach to 3-hydroxyethyllî²-lactams and α-aminoacid derivatives. Tetrahedron Letters, 1988, 29, 3133-3136.	1.4	28
115	Structural and Solvent Effects on the Mechanism of the Thermal Decarboxylation of 2-Oxetanones. A Limiting Case between Concerted and Stepwise Pathways in Pericyclic Reactions. Journal of the American Chemical Society, 1997, 119, 816-825.	13.7	28
116	Efficient Diastereoâ€and Enantioselective Synthesis of <i>exo</i> â€Nitroprolinates by 1,3â€Dipolar Cycloadditions Catalyzed by Chiral Phosphoramiditeâ‹Silver(I) Complexes. Advanced Synthesis and Catalysis, 2014, 356, 3861-3870.	4.3	28
117	Pyridine assisted oxidations of alcohols to carbonyl compounds by means of 3-carâ ypyridinium dichromate (ndc) reagent. Tetrahedron, 1987, 43, 3963-3974.	1.9	27
118	Asymmetric synthesis of monocyclic β-lactams: application of imines derived from chiral N-protected α-amino aldehydes in the staudinger reaction. Tetrahedron Letters, 1991, 32, 3109-3110.	1.4	27
119	Stereoselectivity, Different Oxidation States, and Multiple Spin States in the Cyclopropanation of Olefins Catalyzed by Fe–Porphyrin Complexes. ACS Catalysis, 2018, 8, 11140-11153.	11.2	27
120	Stepwise Mechanism for the Bromination of Arenes by a Hypervalent Iodine Reagent. Journal of Organic Chemistry, 2020, 85, 2142-2150.	3.2	27
121	[4+3] versus [4+2] Mechanisms in the Dimerization of 2-Boryl-1,3-butadienes. A Theoretical and Experimental Study. Journal of Organic Chemistry, 2002, 67, 9153-9161.	3.2	26
122	Substituent Effects in Eight-Electron Electrocyclic Reactions. Journal of Organic Chemistry, 2005, 70, 1035-1041.	3.2	26
123	Alkyl(phenylthio)ketenes as synthetic equivalents of monoalkylketenes: A concise general route to 3-alkyl β-lactams as carbapenem building-blocks. Tetrahedron Letters, 1989, 30, 4577-4580.	1.4	25
124	An ab initio study on the mechanism of the alkene–isocyanate cycloaddition reaction to form β-lactams. Journal of the Chemical Society Chemical Communications, 1993, , 1450-1452.	2.0	25
125	Solvent Effects on the Conformer Distribution of 2-Methoxypropanal and Chloroacetaldehyde. A Model Case for the Conformational Analysis in Solution of Chiral Aldehydes Including Polar Groups. Journal of Organic Chemistry, 1997, 62, 6485-6492.	3.2	25
126	The Photochemical Reactivity of the "Photo-Inert―Tungsten (Fischer) Carbene Complexes. Angewandte Chemie - International Edition, 2006, 45, 125-128.	13.8	25

#	Article	IF	CITATIONS
127	Comparative Normal Mode Analysis of LFA-1 Integrin I-domains. Journal of Molecular Biology, 2007, 374, 231-249.	4.2	25
128	Stereocontrolled synthesis of 3,5-dialkyl-4-amino pyrrolidin-2-ones from β-lactams as chiral templates Tetrahedron Letters, 1992, 33, 4827-4830.	1.4	24
129	Synthesis and Ligand Properties of a Stable Fiveâ€Memberedâ€Ring Vinylidenephosphorane. Angewandte Chemie - International Edition, 2008, 47, 7530-7533.	13.8	24
130	Selectivity under microwave irradiation. Benzylation of 2-pyridone: an experimental and theoretical study. Tetrahedron, 2008, 64, 8169-8176.	1.9	24
131	Remote Substituent Effects on the Stereoselectivity and Organocatalytic Activity of Densely Substituted Unnatural Proline Esters in Aldol Reactions. European Journal of Organic Chemistry, 2015, 2015, 2503-2516.	2.4	23
132	Enantioselective Synthesis of exo-4-Nitroprolinates from NitroÂalkenes and Azomethine Ylides Catalyzed by Chiral PhosphorÂamidite·Silver(I) or Copper(II) Complexes. Synthesis, 2015, 47, 934-943.	2.3	23
133	Stereoselective Coupling of <i>N</i> - <i>tert</i> -Butanesulfinyl Aldimines and β-Keto Acids: Access to β-Amino Ketones. Journal of Organic Chemistry, 2017, 82, 7481-7491.	3.2	23
134	Fluorescent bicolour sensor for low-background neutrinoless double β decay experiments. Nature, 2020, 583, 48-54.	27.8	23
135	Tandem [2+2] cycloaddition-cycloreversion reactions in highly polar media: A convergent one-pot entry to substituted alkenes and dienes. Tetrahedron Letters, 1996, 37, 7143-7146.	1.4	22
136	Identification of (1H)-pyrroles as histone deacetylase inhibitors with antitumoral activity. Oncogene, 2009, 28, 1477-1484.	5.9	22
137	Mechanism of DNA Methylation: The Double Role of DNA as a Substrate and as a Cofactor. Journal of Molecular Biology, 2010, 400, 632-644.	4.2	22
138	A concise synthesis of 4-unsubstituted azetidin-2-ones. Journal of the Chemical Society Chemical Communications, 1987, , 1743-1744.	2.0	21
139	Origins of Stereocontrol in the [2 + 2] Cycloaddition between Achiral Ketenes and Chiral α-Alkoxy Aldehydes. A Pericyclic Alternative to the Aldol Reaction. Journal of Organic Chemistry, 1998, 63, 5216-5227.	3.2	21
140	General Contribution of Nonspecific Interactions to Fluorescence Intensity. Analytical Chemistry, 2006, 78, 3699-3705.	6.5	21
141	Computational Studies on the Synthesis of β-Lactams via [2+2] Thermal Cycloadditions. Topics in Heterocyclic Chemistry, 2010, , 313-347.	0.2	21
142	Fluorescence detection by intensity changes for high-performance thin-layer chromatography separation of lipids using automated multiple development. Journal of Chromatography A, 2011, 1218, 2668-2675.	3.7	21
143	Design, Synthesis, and Functional Evaluation of Leukocyte Function Associated Antigen-1 Antagonists in Early and Late Stages of Cancer Development. Journal of Medicinal Chemistry, 2013, 56, 735-747.	6.4	21
144	Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance. ACS Nano, 2018, 12, 11426-11433.	14.6	21

#	Article	IF	CITATIONS
145	Triphenylphosphine dibromide and dimethylsulfide dibromide as versatile reagents for beta-lactam synthesis. Tetrahedron Letters, 1985, 26, 3041-3044.	1.4	20
146	The Noncarbonylative Photochemistry of Group 6 Fischer Carbene Complexes. European Journal of Inorganic Chemistry, 2008, 2008, 2454-2462.	2.0	20
147	Studying Double Group Transfer Reactions by Means of Computational Methods. Current Organic Chemistry, 2010, 14, 1578-1585.	1.6	20
148	Interplay between aromaticity and strain in double group transfer reactions to 1,2-benzyne. Journal of Computational Chemistry, 2016, 37, 1265-1273.	3.3	20
149	Stereoselective conjugate addition of carbon nucleophiles to chiral (E)-nitroalkenes bearing a γ-stereocenter. Origins of the observed anti selectivity. Tetrahedron Letters, 1996, 37, 3055-3058.	1.4	19
150	The Final Steps of the Oppolzer Cyclization: Mechanism of the Insertion of Alkenes into Allylpalladium(II) Complexes. Chemistry - A European Journal, 2003, 9, 96-105.	3.3	19
151	Double Group Transfer Reactions as Indicators of Aromatic Stabilization. European Journal of Organic Chemistry, 2007, 2007, 5410-5415.	2.4	19
152	Mo studies on β-lactams I. On the structure and reactivity of azetidin-2-one with split-valence basis sets Computational and Theoretical Chemistry, 1988, 166, 481-486.	1.5	18
153	Coralyne cation, a fluorescent probe for general detection in planar chromatography. Journal of Chromatography A, 2007, 1146, 251-257.	3.7	18
154	Cyclic Electron Delocalization in Pericyclic Reactions. Current Organic Chemistry, 2011, 15, 3594-3608.	1.6	18
155	Synthesis of radiolabelled aryl azides from diazonium salts: experimental and computational results permit the identification of the preferred mechanism. Chemical Communications, 2015, 51, 8954-8957.	4.1	18
156	The α-bromoester-imine condensation promoted by zinc-trimethylchlorosilane: a stereospecific short formal synthesis of (±)-carbapenem antibiotics and related compounds. Journal of the Chemical Society Chemical Communications, 1989, , 74-76.	2.0	17
157	Aggregation and Cooperative Effects in the Aldol Reactions of Lithium Enolates. Chemistry - A European Journal, 2013, 19, 13761-13773.	3.3	17
158	Synthesis of Chromen[4,3â€ <i>b</i>]pyrrolidines by Intramolecular 1,3â€Đipolar Cycloadditions of Azomethine Ylides: An Experimental and Computational Assessment of the Origin of Stereocontrol. European Journal of Organic Chemistry, 2015, 2015, 4689-4698.	2.4	17
159	Stereospecific Synthesis of α-Amino Allylsilane Derivatives through a [3,3]-Allyl Cyanate Rearrangement. Mild Formation of Functionalized Disiloxanes. Journal of Organic Chemistry, 2016, 81, 4633-4644.	3.2	16
160	Stereoselective annelation of trimethylsiloxyacetic acids and imines into 3-hydroxy- β-lactams. Tetrahedron Letters, 1985, 26, 4239-4242.	1.4	15
161	Regio and diastereoselective multicomponent 1,3-dipolar cycloadditions between prolinate hydrochlorides, aldehydes and dipolarophiles for the direct synthesis of pyrrolizidines. Tetrahedron, 2015, 71, 9645-9661.	1.9	15
162	<i>In vitro</i> and <i>in vivo</i> activity of a new small-molecule inhibitor of HDAC6 in mantle cell lymphoma. Haematologica, 2018, 103, e537-e540.	3.5	15

#	Article	IF	CITATIONS
163	A short formal synthesis of the carbapenem antibiotic ($\hat{A}\pm$)-PS-5. Journal of the Chemical Society Chemical Communications, 1988, , 809-810.	2.0	14
164	Pharmacokinetics and tissue distribution of Kendine 91, a novel histone deacetylase inhibitor, in mice. Cancer Chemotherapy and Pharmacology, 2009, 64, 153-159.	2.3	14
165	Changes in Fluorescent Emission Due to Nonâ€covalent Interactions as a General Detection Procedure for Thinâ€Layer Chromatography. ChemPhysChem, 2012, 13, 291-299.	2.1	14
166	Microwaveâ€Assisted Organocatalyzed Rearrangement of Propargyl Vinyl Ethers to Salicylaldehyde Derivatives: An Experimental and Theoretical Study. Chemistry - A European Journal, 2015, 21, 18280-18289.	3.3	14
167	Taniaphos·AgF-catalyzed enantioselective 1,3-dipolar cycloaddition of stabilized azomethine ylides derived from 2,2-dimethoxyacetaldehyde. Tetrahedron, 2016, 72, 6043-6051.	1.9	14
168	Cyclopropanation reactions catalysed by dendrimers possessing one metalloporphyrin active site at the core: linear and sigmoidal kinetic behaviour for different dendrimer generations. Tetrahedron, 2016, 72, 1120-1131.	1.9	14
169	Synthetic Aspects of Homochiral βâ€Lactams Derived from Nâ€Protected αâ€Aminoimines Via Asymmetric [2+2] Cycloaddition Reaction. Bulletin Des Sociétés Chimiques Belges, 1992, 101, 541-554.	0.0	13
170	Twoâ€State Reactivity of Histone Demethylases Containing Jumonjiâ€C Active Sites: Different Mechanisms for Different Methylation Degrees. Chemistry - A European Journal, 2017, 23, 137-148.	3.3	13
171	Lanthanumâ€Catalyzed Enantioselective Trifluoromethylation by Using an Electrophilic Hypervalent Iodine Reagent. Chemistry - A European Journal, 2019, 25, 8214-8218.	3.3	13
172	Phenanthrene-Extended Phenazine Dication: An Electrochromic Conformational Switch Presenting Dual Reactivity. Journal of the American Chemical Society, 2022, 144, 7295-7301.	13.7	13
173	Transition structures for the reformatsky reaction. A theoretical (MNDO-PM3) study Tetrahedron Letters, 1993, 34, 6111-6114.	1.4	12
174	Resonance driven regioselective demethylation of berberine. Microwave assisted synthesis of berberrubine and its assessment as fluorescent chemosensor for alkanes. Tetrahedron, 2015, 71, 6148-6154.	1.9	12
175	Cooperative Catalysis with Coupled Chiral Induction in 1,3â€Dipolar Cycloadditions of Azomethine Ylides. Chemistry - A European Journal, 2018, 24, 8092-8097.	3.3	12
176	Enhancing stereochemical diversity by means of microwave irradiation in the absence of solvent: Synthesis of highly substituted nitroproline esters via 1,3-dipolar reactions. Molecular Diversity, 2003, 7, 175-180.	3.9	11
177	Azavinylidenephosphoranes: A Class of Cyclic Push–Pull Carbenes. Chemistry - A European Journal, 2014, 20, 12528-12536.	3.3	11
178	Selective synthesis of trisubstituted pyrroles through the reactions of alkynyl Fischer carbene complexes with oxazolones. Organic and Biomolecular Chemistry, 2020, 18, 538-550.	2.8	11
179	A β-lactam approach to Ï^-amino-β-keto acid derivatives Tetrahedron Letters, 1991, 32, 3115-3118.	1.4	10
180	Computational Chemistry; A Useful Tool for the Chemical Synthesis of Complex Molecules, Heterocycles and Catalysts. Synlett, 2013, 24, 535-549.	1.8	10

#	Article	IF	CITATIONS
181	New Insights into the Reactivity of Cisplatin with Free and Restrained Nucleophiles: Microsolvation Effects and Base Selectivity in Cisplatin–DNA Interactions. ChemPhysChem, 2016, 17, 3932-3947.	2.1	10
182	1,3-Dioxa-[3,3]-sigmatropic Oxo-Rearrangement of Substituted Allylic Carbamates: Scope and Mechanistic Studies. Journal of Organic Chemistry, 2018, 83, 14861-14881.	3.2	10
183	A convenient synthetic approach to alpha-amino-beta-lactam synthesis promoted by phenyl dichlorophosphate reagent. Tetrahedron Letters, 1984, 25, 3905-3908.	1.4	9
184	Donorâ€Stabilized 1,3â€Disilaâ€2,4â€diazacyclobutadiene with a Nonbonded Siâ‹â‹â‹Si Distance Compres Double Bond Length. Angewandte Chemie - International Edition, 2016, 55, 14673-14677.	sed to a S 13.8	i=Si
185	Synthesis of <i>exo</i> -Imidazolidin-2-one Dienes, Their Isomerization, and Selectivity in Diels–Alder Cycloadditions. Journal of Organic Chemistry, 2018, 83, 5347-5364.	3.2	9
186	A novel synthetic approach to N-unsubstituted \hat{l}^2 -lactams. Tetrahedron Letters, 1985, 26, 4235-4238.	1.4	8
187	Theoretical and experimental studies on the periselectivity of the cycloaddition reaction between activated ketenes and conjugated imines. Tetrahedron Letters, 1994, 35, 7825-7828.	1.4	8
188	Selective "One-Pot―Synthesis of Functionalized Cyclopentenones. Journal of Organic Chemistry, 2012, 77, 6327-6331.	3.2	8
189	Negishi coupling reactions with [¹¹ C]CH ₃ I: a versatile method for efficient ¹¹ C–C bond formation. Chemical Communications, 2018, 54, 4398-4401.	4.1	8
190	Density Functional Theory Study on the Demethylation Reaction between Methylamine, Dimethylamine, Trimethylamine, and Tamoxifen Catalyzed by a Fe(IV)–Oxo Porphyrin Complex. Journal of Physical Chemistry A, 2018, 122, 1658-1671.	2.5	8
191	Discovering Biomolecules with <i>Huisgenase</i> Activity: Designed Repeat Proteins as Biocatalysts for (3 + 2) Cycloadditions. Journal of the American Chemical Society, 2020, 142, 762-776.	13.7	8
192	Development and validation of a liquid chromatography–tandem mass spectrometry for the determination of Kendine 91, a novel histone deacetylase inhibitor, in mice plasma and tissues: Application to a pharmacokinetic study. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 870, 109-116.	2.3	7
193	Synthetic scope and DFT analysis of the chiral binap–gold(I) complex-catalyzed 1,3-dipolar cycloaddition of azlactones with alkenes. Beilstein Journal of Organic Chemistry, 2013, 9, 2422-2433.	2.2	7
194	Synthetic Conjugates of Ursodeoxycholic Acid Inhibit Cystogenesis in Experimental Models of Polycystic Liver Disease. Hepatology, 2021, 73, 186-203.	7.3	7
195	Characterization of (P+Lx)Lylon Molecule Clusters of First-Row Hydrides. Journal of the American Chemical Society, 1996, 118, 2718-2725.	13.7	6
196	Theoretical study on the reaction between 4,6-dimethyl-1,2,3-triazine and enamines. Perkin Transactions II RSC, 2002, , 1257-1263.	1.1	6
197	Applied computational chemistry. Chemical Society Reviews, 2014, 43, 4906.	38.1	6
198	Catalysis of a 1,3-dipolar reaction by distorted DNA incorporating a heterobimetallic platinum(<scp>ii</scp>) and copper(<scp>ii</scp>) complex. Chemical Science, 2017, 8, 7038-7046.	7.4	6

#	Article	IF	CITATIONS
199	Bicolour fluorescent molecular sensors for cations: design and experimental validation. Physical Chemistry Chemical Physics, 2021, 23, 15440-15457.	2.8	6
200	Ab InitioStudies on the Structure of Silyl Isocyanate in the Gas Phase, in Solution, and in the Crystalline State. The Journal of Physical Chemistry, 1996, 100, 9619-9623.	2.9	5
201	Synthesis of 11C-labeled Kendine 91, a histone deacetylase inhibitor. Applied Radiation and Isotopes, 2012, 70, 2552-2557.	1.5	5
202	The reaction of NH-indazoles with 1-fluoro-2,4-dinitrobenzene: the unusual formation of benzotriazole-N-oxides. New Journal of Chemistry, 2013, 37, 2384.	2.8	5
203	A Threeâ€Component Enantioselective Cyclization Reaction Catalyzed by an Unnatural Amino Acid Derivative. Angewandte Chemie, 2018, 130, 676-680.	2.0	5
204	Fluorescent Imidazo[1,2―a]pyrimidine Compounds as Biocompatible Organic Photosensitizers that Generate Singlet Oxygen: A Potential Tool for Phototheranostics. Chemistry - A European Journal, 2021, 27, 6213-6222.	3.3	5
205	Additive and Emergent Catalytic Properties of Dimeric Unnatural Amino Acid Derivatives: Aldol and Conjugate Additions. Chemistry - A European Journal, 2021, 27, 15671-15687.	3.3	5
206	Biodistribution and metabolism of 11C-labeled Kendine 91 in mice and rats. Applied Radiation and Isotopes, 2012, 70, 2545-2551.	1.5	4
207	Computational insights on the possibility of tri-coordinated cisplatinated adducts with protein models. Journal of Inorganic Biochemistry, 2012, 117, 230-236.	3.5	4
208	Is it possible to achieve a complete desaturation of cycloalkanes promoted by o-benzyne?. Chemical Communications, 2015, 51, 5302-5305.	4.1	4
209	Mono―and Diâ€Alkylation Processes of DNA Bases by Nitrogen Mustard Mechlorethamine. ChemPhysChem, 2017, 18, 3390-3401.	2.1	4
210	Organocatalyzed Transient Dienamine-Mediated Diels-Alder Reactions between α,β-Unsaturated Ketones and Alkenes. Letters in Organic Chemistry, 2018, 15, 394-403.	0.5	4
211	Size and branching effects on the fluorescence of benzylic dendrimers possessing one apigenin fluorophore at the core. Tetrahedron, 2013, 69, 10361-10368.	1.9	2
212	Alkaloids Reactivity: DFT Analysis of Selective Demethylation Reactions. Journal of Organic Chemistry, 2018, 83, 15101-15109.	3.2	2
213	Synthesis of Sultones from Chlorosulfates by a Complex Cascade Reaction Occurring under Mild Thermal Conditions. Chemistry - A European Journal, 2019, 25, 13083-13087.	3.3	2
214	Reply to "Comment on â€~Chirality-Induced Electron Spin Polarization and Enantiospecific Response in Solid-State Cross-Polarization Nuclear Magnetic Resonance'― ACS Nano, 2019, 13, 6133-6136.	14.6	2
215	Metal Ion Dependent Adhesion Sites in Integrins:  A Combined DFT and QMC Study on Mn2+. Journal of Physical Chemistry B, 2007, 111, 9099-9103.	2.6	1
216	Donorâ€Stabilized 1,3â€Disilaâ€2,4â€diazacyclobutadiene with a Nonbonded Siâ‹â‹â‹Si Distance Compres	ssed to a S	Si=Si

ipi 2.0 216 Double Bond Length. Angewandte Chemie, 2016, 128, 14893-14897.

#	Article	IF	CITATIONS
217	Role of imine isomerization in the stereocontrol of the Staudinger reaction between ketenes and imines. RSC Advances, 2021, 12, 104-117.	3.6	1
218	Development and validation of a LCâ€MS assay for the quantification of ikh12 a novel antiâ€ŧumor candidate in rat plasma and tissues and its application in a pharmacokinetic study. Biomedical Chromatography, 2015, 29, 1249-1258.	1.7	0
219	Aromaticity in molecules and transition structures: from atomic and molecular orbitals to simple ring current models. , 2021, , 1-41.		0