
Nurzhan Umirov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4562485/publications.pdf Version: 2024-02-01

NURTHAN LIMIROV

#	Article	IF	CITATIONS
1	High Performance Zn/LiFePO4 Aqueous Rechargeable Battery for Large Scale Applications. Electrochimica Acta, 2015, 152, 505-511.	5.2	118
2	Nickel Hexacyanoferrate Nanoparticles as a Low Cost Cathode Material for Lithium-Ion Batteries. Electrochimica Acta, 2015, 184, 58-63.	5.2	64
3	A Free-Standing Sulfur/Nitrogen-Doped Carbon Nanotube Electrode for High-Performance Lithium/Sulfur Batteries. Nanoscale Research Letters, 2015, 10, 450.	5.7	51
4	High performance freestanding composite cathode for lithium-sulfur batteries. Electrochimica Acta, 2016, 217, 242-248.	5.2	50
5	Effect of graphene nanosheets on electrochemical performance of Li4Ti5O12 in lithium-ion capacitors. Ceramics International, 2017, 43, 6554-6562.	4.8	33
6	Microstructure and electrochemical properties of rapidly solidified Si–Ni alloys as anode for lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 71, 351-360.	5.8	27
7	Microalgae-derived hollow carbon-MoS2 composite as anode for lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2019, 79, 106-114.	5.8	25
8	Novel silicon nanowire film on copper foil as high performance anode for lithium-ion batteries. Ionics, 2018, 24, 373-378.	2.4	22
9	Analysis of intrinsic properties of Li4Ti5O12 using single-particle technique. Journal of Electroanalytical Chemistry, 2019, 855, 113514.	3.8	19
10	The Electrochemical Performances of n-Type Extended Lattice Spaced Si Negative Electrodes for Lithium-Ion Batteries. Frontiers in Chemistry, 2019, 7, 389.	3.6	15
11	Lithium dendritic growth inhibitor enabling high capacity, dendrite-free, and high current operation for rechargeable lithium batteries. Energy Storage Materials, 2022, 46, 76-89.	18.0	14
12	Novel silane-treated polyacrylonitrile as a promising negative electrode binder for LIBs. Journal of Alloys and Compounds, 2020, 815, 152481.	5.5	12
13	Pragmatic Approach to Design Silicon Alloy Anode by the Equilibrium Method. ACS Applied Materials & Interfaces, 2020, 12, 17406-17414.	8.0	10
14	Li-incorporated porous carbon monoliths derived from carboxymethyl cellulose as anode material for high power lithium-ion batteries. Journal of Power Sources, 2021, 506, 230050.	7.8	10
15	Thermal and Structural Stabilities of LixCoO2 cathode for Li Secondary Battery Studied by a Temperature Programmed Reduction. Eurasian Chemico-Technological Journal, 2019, , 3.	0.6	9
16	Fundamental Approach to Capacity Prediction of Si-Alloys as Anode Material for Li-ion Batteries. Journal of Electrochemical Science and Technology, 2018, 9, 51-59.	2.2	9
17	Facile fabrication of polyacrylonitrileâ€derived porous carbon beads via electron beam irradiation as anode materials for Liâ€ion batteries. International Journal of Energy Research, 2021, 45, 9530-9540.	4.5	6
18	Li _{2.0} Ni _{0.67} N, a Promising Negative Electrode Material for Li-Ion Batteries with a Soft Structural Response. Inorganic Chemistry, 2017, 56, 13815-13821.	4.0	5

Nurzhan Umirov

#	Article	IF	CITATIONS
19	Grain size effect of nanocrystalline-Si embedded in buffering alloy-matrix as anode for Li-ion batteries. Journal of Alloys and Compounds, 2021, 882, 160558.	5.5	5
20	Relationship between Mechanical and Electrochemical Property in Silicon Alloy Designed by Grain Size as Anode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 0, , .	2.9	3
21	Onion-Structured Si Anode Constructed with Coating by Li4Ti5O12 and Cyclized-Polyacrylonitrile for Lithium-Ion Batteries. Nanomaterials, 2020, 10, 1995.	4.1	1
22	Understanding of Open-circuit voltage and Volume Change depending on the Electrochemical Properties of Anode Materials for Li-ion battery. Han-gug Jeonji Haghoeji, 2021, 1, 1-5.	0.1	1
23	Investigation of Using Sulfur-Containing Gases in Low-Temperature Fuel Cell at Sulfuric Acid Production Site. Eurasian Chemico-Technological Journal, 2014, 16, .	0.6	1
24	Thermal stability and reduction mechanism of LiNi0.8Co0.1Mn0.1O2 and LiNi0.5Co0.2Mn0.3O2 cathode materials studied by a Temperature Programmed Reduction. Thermochimica Acta, 2021, 706, 179069.	2.7	1
25	Rechargeable Aqueous Lithium-Ion Battery Zn/LiFePO4 for Large Scale Energy Storage. ECS Meeting Abstracts, 2014, , .	0.0	0
26	Free-Standing and Flexible Carbon Membrane for Lithium-Sulphur Batteries. ECS Meeting Abstracts, 2015, , .	0.0	0
27	Effect of Antifreeze Additives on Low Temperature Performance of Lithium-Ion Aqueous Battery. ECS Meeting Abstracts, 2016, , .	0.0	0
28	High Performance Sulfur-Composite Cathode for Lithium-Ion Sulfur Batteries. ECS Meeting Abstracts, 2016, , .	0.0	0
29	Solid Electrolytes for Thin Film Li-Ion Batteries with Novel Si and SiC Based Anodes. ECS Meeting Abstracts, 2017, , .	0.0	0
30	(Invited) Microstructure and Capacity Design of Si-Silicide Alloys As a High-Performance Anode for Li Secondary Batteries. ECS Meeting Abstracts, 2018, , .	0.0	0
31	Effect of Tetrapropyl Ammonium Hydroxide on Zn Dendrite Formation for Rechargeable Aqueous Battery. ECS Meeting Abstracts, 2021, MA2021-02, 1890-1890.	0.0	Ο