Philip Hedrick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4562149/publications.pdf

Version: 2024-02-01

175 papers 16,985 citations

²⁵⁴²³
59
h-index

124 g-index

178 all docs

178 docs citations

178 times ranked 16216 citing authors

#	Article	IF	CITATIONS
1	Parthenogenesis in California Condors: Impact on Genetic Variation. Journal of Heredity, 2022, 113, 215-216.	1.0	O
2	Planned cull endangers Swedish wolf population. Science, 2022, 377, 162-162.	6.0	5
3	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	0.8	18
4	Comment on "Individual heterozygosity predicts translocation success in threatened desert tortoisesâ€. Science, 2021, 372, .	6.0	1
5	The crucial role of genome-wide genetic variation in conservation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	196
6	Heterozygosity levels and estimation of selfâ€fertilization in an invasive species. Ecology and Evolution, 2020, 10, 14451-14452.	0.8	1
7	Post-2020 goals overlook genetic diversity. Science, 2020, 367, 1083-1085.	6.0	132
8	Evolution of the human MHC: New haplotype frequency analysis is not informative. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23386-23387.	3.3	3
9	Galapagos Islands Endemic Vertebrates: A Population Genetics Perspective. Journal of Heredity, 2019, 110, 137-157.	1.0	4
10	Genetics and extinction and the example of Isle Royale wolves. Animal Conservation, 2019, 22, 302-309.	1.5	56
11	How should we compare different genomic estimates of the strength of inbreeding depression?. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2492-E2493.	3.3	22
12	Passenger pigeon genomic diversity and extinction. Heredity, 2018, 120, 383-385.	1.2	2
13	Negative-Assortative Mating in the White-Throated Sparrow. Journal of Heredity, 2018, 109, 223-231.	1.0	21
14	Genetic rescue, not genetic swamping, is important for Mexican wolves. Biological Conservation, 2018, 224, 366-367.	1.9	2
15	Genomic Variation of Inbreeding and Ancestry in the Remaining Two Isle Royale Wolves. Journal of Heredity, 2017, 108, esw083.	1.0	18
16	Assortative Mating and Linkage Disequilibrium. G3: Genes, Genomes, Genetics, 2017, 7, 55-62.	0.8	12
17	Ancestry dynamics in a South American population: The impact of gene flow and preferential mating. American Journal of Physical Anthropology, 2017, 163, 474-479.	2.1	1
18	Genetics and recovery goals for Mexican wolves. Biological Conservation, 2017, 206, 210-211.	1.9	2

#	Article	IF	Citations
19	Examining the cause of high inbreeding depression: analysis of wholeâ€genome sequence data in 28 selfed progeny of <i>Eucalyptus grandis</i> . New Phytologist, 2016, 209, 600-611.	3.5	56
20	Negative-assortative mating for color in wolves. Evolution; International Journal of Organic Evolution, 2016, 70, 757-766.	1.1	45
21	Understanding Inbreeding Depression, Purging, and Genetic Rescue. Trends in Ecology and Evolution, 2016, 31, 940-952.	4.2	400
22	The influence of captive breeding management on founder representation and inbreeding in the â€~AlalÄ, the Hawaiian crow. Conservation Genetics, 2016, 17, 369-378.	0.8	7
23	Heterozygote Advantage: The Effect of Artificial Selection in Livestock and Pets. Journal of Heredity, 2015, 106, 141-154.	1.0	31
24	Mexican Wolves Are a Valid Subspecies and an Appropriate Conservation Target. Journal of Heredity, 2015, 106, 415-416.	1.0	12
25	Estimation of Male Gene Flow: Use Caution. Journal of Heredity, 2015, 106, esv082.	1.0	2
26	Measuring Relatedness between Inbred Individuals. Journal of Heredity, 2015, 106, 20-25.	1.0	36
27	Not surprisingly, no inheritance of a trait results in no evolution. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4810.	3.3	13
28	Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population. Conservation Genetics, 2014, 15, 1111-1121.	0.8	98
29	Heterozygote Advantage in a Finite Population: Black Color in Wolves. Journal of Heredity, 2014, 105, 457-465.	1.0	14
30	Conservation genetics and the persistence and translocation of small populations: bighorn sheep populations as examples. Animal Conservation, 2014, 17, 106-114.	1.5	21
31	Desert Bighorn Sheep: Changes in Genetic Variation Over Time and the Impact of Merging Populations. Journal of Fish and Wildlife Management, 2014, 5, 3-13.	0.4	6
32	Adaptive introgression in animals: examples and comparison to new mutation and standing variation as sources of adaptive variation. Molecular Ecology, 2013, 22, 4606-4618.	2.0	562
33	Estimation of Male Gene Flow from Measures of Nuclear and Female Genetic Differentiation. Journal of Heredity, 2013, 104, 713-717.	1.0	18
34	Coat colour in mouse populations selected for weight gain: support for hitchhiking, not pleiotropy. Genetical Research, 2013, 95, 4-13.	0.3	1
35	Genetic Population Substructure in Bison at Yellowstone National Park. Journal of Heredity, 2012, 103, 360-370.	1.0	15
36	Genetic Evaluation of Captive Populations of Endangered Species and Merging of Populations: Gila Topminnows as an Example. Journal of Heredity, 2012, 103, 651-660.	1.0	4

#	Article	IF	Citations
37	What is the evidence for heterozygote advantage selection?. Trends in Ecology and Evolution, 2012, 27, 698-704.	4.2	173
38	Genetic evaluation of the initiation of a captive population: the general approach and a case study in the endangered pallid sturgeon (Scaphirhynchus albus). Conservation Genetics, 2012, 13, 1381-1391.	0.8	11
39	Phenotypic Effects of Cattle Mitochondrial DNA in American Bison. Conservation Biology, 2012, 26, 1130-1136.	2.4	29
40	New reservoirs of HLA alleles: pools of rare variants enhance immune defense. Trends in Genetics, 2012, 28, 480-486.	2.9	52
41	Resistance to malaria in humans: the impact of strong, recent selection. Malaria Journal, 2012, 11, 349.	0.8	42
42	POPULATION GENETICS OF THE WHITE-PHASED "SPIRIT―BLACK BEAR OF BRITISH COLUMBIA. Evolution; International Journal of Organic Evolution, 2012, 66, 305-313.	1.1	18
43	REVERSING MOTHER'S CURSE REVISITED. Evolution; International Journal of Organic Evolution, 2012, 66, 612-616.	1.1	27
44	Conservation genetics and evolution in an endangered species: research in Sonoran topminnows*. Evolutionary Applications, 2012, 5, 806-819.	1.5	14
45	Assessing population structure: <i>F</i> _{ST} and related measures. Molecular Ecology Resources, 2011, 11, 5-18.	2.2	967
46	Reevaluating and Broadening the Definition of Genetic Rescue. Conservation Biology, 2011, 25, 1069-1070.	2.4	32
47	Selection and Mutation for \hat{l}_{\pm} Thalassemia in Nonmalarial and Malarial Environments. Annals of Human Genetics, 2011, 75, 468-474.	0.3	9
48	Population genetics of malaria resistance in humans. Heredity, 2011, 107, 283-304.	1.2	223
49	Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3336-3344.	1.2	108
50	Rapid Decrease in Horn Size of Bighorn Sheep: Environmental Decline, Inbreeding Depression, or Evolutionary Response to Trophy Hunting?. Journal of Heredity, 2011, 102, 770-781.	1.0	21
51	Genetic rescue guidelines with examples from Mexican wolves and Florida panthers. Conservation Genetics, 2010, 11, 615-626.	0.8	238
52	Cattle ancestry in bison: explanations for higher mtDNA than autosomal ancestry. Molecular Ecology, 2010, 19, 3328-3335.	2.0	18
53	Sex Determination: Genetic Models for Oysters. Journal of Heredity, 2010, 101, 602-611.	1.0	43
54	Conservation Genetics and North American Bison (Bison bison). Journal of Heredity, 2009, 100, 411-420.	1.0	88

#	Article	IF	CITATIONS
55	Isolation by distance among California sea lion populations in Mexico: redefining management stocks. Molecular Ecology, 2009, 18, 1088-1099.	2.0	43
56	Wolf of a different colour. Heredity, 2009, 103, 435-436.	1.2	18
57	Estimation of the bottleneck size in Florida panthers. Animal Conservation, 2008, 11, 104-110.	1.5	26
58	Captive breeding and the reintroduction of Mexican and red wolves. Molecular Ecology, 2008, 17, 344-350.	2.0	88
59	Genetic rescue and inbreeding depression in Mexican wolves. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2365-2371.	1.2	92
60	Virgin birth, genetic variation and inbreeding. Biology Letters, 2007, 3, 715-716.	1.0	17
61	SEX: DIFFERENCES IN MUTATION, RECOMBINATION, SELECTION, GENE FLOW, AND GENETIC DRIFT. Evolution; International Journal of Organic Evolution, 2007, 61, 2750-2771.	1.1	130
62	Balancing selection. Current Biology, 2007, 17, R230-R231.	1.8	54
63	Genetic Polymorphism in Heterogeneous Environments: The Age of Genomics. Annual Review of Ecology, Evolution, and Systematics, 2006, 37, 67-93.	3.8	350
64	Admixture dynamics in Hispanics: A shift in the nuclear genetic ancestry of a South American population isolate. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7234-7239.	3.3	221
65	Genetic sex determination and extinction. Trends in Ecology and Evolution, 2006, 21, 55-57.	4.2	35
66	Dynamics of Hybridization and Introgression in Red Wolves and Coyotes. Conservation Biology, 2006, 20, 1272-1283.	2.4	70
67	The endangered Sonoran topminnow: Examination of species and ESUs using three mtDNA genes. Conservation Genetics, 2006, 7, 483-492.	0.8	11
68	â€~Ground truth' for selection on CCR5-Δ32. Trends in Genetics, 2006, 22, 293-296.	2.9	37
69	A STANDARDIZED GENETIC DIFFERENTIATION MEASURE. Evolution; International Journal of Organic Evolution, 2005, 59, 1633-1638.	1.1	1,471
70	Premating, Not Postmating, Barriers Drive Genetic Dynamics in Experimental Hybrid Populations of the Endangered Sonoran Topminnow. Genetics, 2005, 171, 655-662.	1.2	13
71	A STANDARDIZED GENETIC DIFFERENTIATION MEASURE. Evolution; International Journal of Organic Evolution, 2005, 59, 1633.	1.1	92
72	Large variance in reproductive success and the Ne/N ratio. Evolution; International Journal of Organic Evolution, 2005, 59, 1596-9.	1.1	57

#	Article	IF	Citations
73	A standardized genetic differentiation measure. Evolution; International Journal of Organic Evolution, 2005, 59, 1633-8.	1.1	441
74	Conservation biology: the impact of population biology and a current perspective. , 2004, , 347-365.		1
75	Response to Comment on "Parasite Selection for Immunogenetic Optimality". Science, 2004, 303, 957b-957.	6.0	13
76	Comment on "Parasite Selection for Immunogenetic Optimality". Science, 2004, 303, 957a-957.	6.0	13
77	Random Mating and Selection in Families Against Homozygotes for HLA in South Amerindians. Hereditas, 2004, 127, 51-58.	0.5	13
78	Conservation genetics in aquatic species: General approaches and case studies in fishes and springsnails of arid lands. Aquatic Sciences, 2004, 66, 402-413.	0.6	36
79	Recent developments in conservation genetics. Forest Ecology and Management, 2004, 197, 3-19.	1.4	71
80	Hopi Indians, ?cultural? selection, and albinism. American Journal of Physical Anthropology, 2003, 121, 151-156.	2.1	11
81	Genetic variation and resistance to a bacterial infection in the endangered Gila topminnow. Animal Conservation, 2003, 6, 369-377.	1.5	17
82	PERSPECTIVE: DETECTING ADAPTIVE MOLECULAR POLYMORPHISM: LESSONS FROM THE MHC. Evolution; International Journal of Organic Evolution, 2003, 57, 1707-1722.	1.1	404
83	INITIAL STAGES OF REPRODUCTIVE ISOLATION IN TWO SPECIES OF THE ENDANGERED SONORAN TOPMINNOW. Evolution; International Journal of Organic Evolution, 2003, 57, 2835-2841.	1.1	9
84	PERSPECTIVE: DETECTING ADAPTIVE MOLECULAR POLYMORPHISM: LESSONS FROM THE MHC. Evolution; International Journal of Organic Evolution, 2003, 57, 1707.	1.1	38
85	INITIAL STAGES OF REPRODUCTIVE ISOLATION IN TWO SPECIES OF THE ENDANGERED SONORAN TOPMINNOW. Evolution; International Journal of Organic Evolution, 2003, 57, 2835.	1.1	0
86	Canine Parvovirus Enteritis, Canine Distemper, and Major Histocompatibility Complex Genetic Variation in Mexican Wolves. Journal of Wildlife Diseases, 2003, 39, 909-913.	0.3	31
87	A Conservation Plan for Native Fishes of the Lower Colorado River. BioScience, 2003, 53, 219.	2.2	124
88	PATHOGEN RESISTANCE AND GENETIC VARIATION AT MHC LOCI. Evolution; International Journal of Organic Evolution, 2002, 56, 1902.	1.1	32
89	Resistance to three pathogens in the endangered winter-run chinook salmon (Oncorhynchus) Tj ETQq $1\ 1\ 0.784$ of Fisheries and Aquatic Sciences, 2002, 59, 966-975.	·314 rgBT / 0.7	Overlock 10 164
90	The major histocompatibility complex (MHC) in declining populations: an example of adaptive variation. , 2002, , 97-113.		35

#	Article	IF	Citations
91	Major histocompatibility complex variation in red wolves: evidence for common ancestry with coyotes and balancing selection. Molecular Ecology, 2002, 11, 1905-1913.	2.0	116
92	PATHOGEN RESISTANCE AND GENETIC VARIATION AT MHC LOCI. Evolution; International Journal of Organic Evolution, 2002, 56, 1902-1908.	1.1	315
93	LETHALS IN FINITE POPULATIONS. Evolution; International Journal of Organic Evolution, 2002, 56, 654-657.	1.1	31
94	Conservation genetics: where are we now?. Trends in Ecology and Evolution, 2001, 16, 629-636.	4.2	404
95	Rapid communication / Communication rapide Invasion of transgenes from salmon or other genetically modified organisms into natural populations. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 841-844.	0.7	38
96	Class I MHC polymorphism and evolution in endangered California Chinook and other Pacific salmon. Immunogenetics, 2001, 53, 483-489.	1.2	57
97	Purging of inbreeding depression and fitness decline in bottlenecked populations of Drosophila melanogaster. Journal of Evolutionary Biology, 2001, 14, 595-601.	0.8	45
98	Is the decline of desert bighorn sheep from infectious disease the result of low MHC variation?. Heredity, 2001, 86, 439-450.	1.2	93
99	Founder effect in an island population of bighorn sheep. Molecular Ecology, 2001, 10, 851-857.	2.0	7 5
100	Using microsatellite and MHC variation to identify species, ESUs, and MUs in the endangered Sonoran topminnow. Molecular Ecology, 2001, 10, 1399-1412.	2.0	87
101	Parasite resistance and genetic variation in the endangered Gila topminnow. Animal Conservation, 2001, 4, 103-109.	1.5	103
102	Inbreeding depression in captive bighorn sheep. Animal Conservation, 2001, 4, 319-324.	1.5	18
103	EVALUATION OF d2, A MICROSATELLITE MEASURE OF INBREEDING AND OUTBREEDING, IN WOLVES WITH A KNOWN PEDIGREE. Evolution; International Journal of Organic Evolution, 2001, 55, 1256-1260.	1.1	77
104	Mutation and linkage disequilibrium in human mtDNA. European Journal of Human Genetics, 2001, 9, 969-972.	1.4	80
105	Rapid communication / Communication rapide <p> Invasion of transgenes from salmon or other genetically modified organisms into natural populations. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 841-844.</p>	0.7	25
106	Inbreeding Depression in the Speke's Gazelle Captive Breeding Program. Conservation Biology, 2000, 14, 1375-1384.	2.4	94
107	Major histocompatibility complex (MHC) variation in the endangered Mexican wolf and related canids. Heredity, 2000, 85, 617-624.	1.2	89
108	MAJOR HISTOCOMPATIBILITY COMPLEX VARIATION IN THE ARABIAN ORYX. Evolution; International Journal of Organic Evolution, 2000, 54, 2145-2151.	1.1	73

#	Article	IF	Citations
109	Genetic variation and population structure in desert bighorn sheep: implications for conservation. Conservation Genetics, 2000, 1, 3-15.	0.8	56
110	The impact of supplementation in winter-run chinook salmon on effective population size., 2000, 91, 112-116.		70
111			

#	Article	IF	CITATIONS
127	No bilateral asymmetry in wild-caught, endangered Poeciliopsis o. occidentalis(Gila topminnows). Heredity, 1998, 80, 214-217.	1.2	7
128	Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends in Ecology and Evolution, 1998, 13, 305-311.	4.2	358
129	MHC Variation in the Endangered Gila Topminnow. Evolution; International Journal of Organic Evolution, 1998, 52, 194.	1.1	21
130	Maintenance of Genetic Polymorphism: Spatial Selection and Selfâ€Fertilization. American Naturalist, 1998, 152, 145-150.	1.0	27
131	MHC VARIATION IN THE ENDANGERED GILA TOPMINNOW. Evolution; International Journal of Organic Evolution, 1998, 52, 194-199.	1.1	59
132	An improved method for estimating inbreeding depression in pedigrees., 1998, 17, 481.		6
133	Strong balancing selection at HLA loci: Evidence from segregation in South Amerindian families. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12452-12456.	3.3	71
134	Neutrality or selection?. Nature, 1997, 387, 138-138.	13.7	12
135	Fitness in the Endangered Gila Topminnow. Adaptabilidad del Poecilido de Gila en Peligro. Conservation Biology, 1997, 11, 162-171.	2.4	63
136	Genetic evaluation of the three captive mexican wolf lineages. Zoo Biology, 1997, 16, 47-69.	0.5	103
137	Genetic Variation of Major Histocompatibility Complex and Microsatellite Loci: A Comparison in Bighorn Sheep. Genetics, 1997, 145, 421-433.	1.2	113
138	Genetics and the environment in interspecific competition: a study using the sibling species Drosophila melanogaster and Drosophila simulans. Oecologia, 1996, 108, 72-78.	0.9	8
139	Bottleneck(s) or Metapopulation in Cheetahs. Conservation Biology, 1996, 10, 897-899.	2.4	40
140	Directions in Conservation Biology: Comments on Caughley. Conservation Biology, 1996, 10, 1312-1320.	2.4	130
141	Elephant Seals and the Estimation of a Population Bottleneck. Journal of Heredity, 1995, 86, 232-235.	1.0	33
142	Gene Flow and Genetic Restoration: The Florida Panther as a Case Study. Conservation Biology, 1995, 9, 996-1007.	2.4	198
143	Genetic polymorphism in a temporally varying environment: effects of delayed germination or diapause. Heredity, 1995, 75, 164-170.	1.2	61
144	Effective Population Size in Winter-Run Chinook Salmon. Conservation Biology, 1995, 9, 615-624.	2.4	68

#	Article	IF	Citations
145	Evolutionary Genetics of the Major Histocompatibility Complex. American Naturalist, 1994, 143, 945-964.	1.0	239
146	Purging inbreeding depression and the probability of extinction: full-sib mating. Heredity, 1994, 73, 363-372.	1.2	375
147	Rare alleles, MHC and captive breeding. , 1994, 68, 187-204.		19
148	Inbreeding and fitness in captive populations: Lessons fromDrosophila. Zoo Biology, 1993, 12, 333-351.	0.5	52
149	Sex-Dependent Habitat Selection and Genetic Polymorphism. American Naturalist, 1993, 141, 491-500.	1.0	16
150	HLA polymorphism in the Havasupai: evidence for balancing selection. American Journal of Human Genetics, 1993, 53, 943-52.	2.6	52
151	Conservation Genetics: Techniques and Fundamentals. , 1992, 2, 30-46.		293
152	Female choice and variation in the major histocompatibility complex Genetics, 1992, 132, 575-581.	1.2	57
153	MHC Polymorphism and the Design of Captive Breeding Programs: Simple Solutions Are Not the Answer. Conservation Biology, 1991, 5, 556-558.	2.4	45
154	Estimation of self-fertilization rate and allelic frequencies in diploidized tetraploids. Heredity, 1991, 67, 259-264.	1.2	4
155	Heterozygosity at individual amino acid sites: extremely high levels for HLA-A and -B genes Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5897-5901.	3.3	98
156	Fertility, Health, and Consanguineous Marriages. Science, 1991, 254, 1434-1434.	6.0	0
157	Gametic disequilibrium and multilocus estimation of selfing rates. Heredity, 1990, 65, 343-347.	1.2	9
158	Linkage of viability genes to marker loci in selfing organisms. Heredity, 1990, 64, 67-72.	1.2	51
159	Genotypic-specific habitat selection: a new model and its application. Heredity, 1990, 65, 145-149.	1.2	42
160	Effect of adult experience on oviposition choice and short-distance attraction inDrosophila buzzatii. Journal of Insect Behavior, 1990, 3, 689-697.	0.4	4
161	Sex in diploids. Nature, 1989, 342, 231-231.	13.7	12
162	Can segregation distortion influence gametic disequilibrium?. Genetical Research, 1988, 52, 237-242.	0.3	4

#	Article	IF	CITATIONS
163	Evolutionary genetics and HLA: another classic example. Biological Journal of the Linnean Society, 1987, 31, 311-331.	0.7	22
164	Gametic Disequilibrium Measures: Proceed With Caution. Genetics, 1987, 117, 331-341.	1.2	797
165	Partial Inbreeding: Equilibrium Heterozygosity and the Heterozygosity Paradox. Evolution; International Journal of Organic Evolution, 1986, 40, 856.	1.1	16
166	PARTIAL INBREEDING: EQUILIBRIUM HETEROZYGOSITY AND THE HETEROZYGOSITY PARADOX. Evolution; International Journal of Organic Evolution, 1986, 40, 856-861.	1.1	46
167	A TWO-LOCUS NEUTRALITY TEST: APPLICATIONS TO HUMANS, <i>E. COLI</i> li> AND LODGEPOLE PINE. Genetics, 1986, 112, 135-156.	1.2	60
168	Analysis of negative and multiple HLA antigen disease associations. Tissue Antigens, 1985, 26, 293-306.	1.0	0
169	Recombination and directional selection (reply). Nature, 1983, 302, 727-727.	13.7	3
170	EVIDENCE FOR BALANCING SELECTION AT HLA. Genetics, 1983, 104, 449-456.	1.2	266
171	GENETIC VARIATION IN A HETEROGENEOUS ENVIRONMENT. II. TEMPORAL HETEROGENEITY AND DIRECTIONAL SELECTION. Genetics, 1976, 84, 145-157.	1.2	69
172	FACTORS RESPONSIBLE FOR A CHANGE IN INTERSPECIFIC COMPETITIVE ABILITY IN <i>DROSOPHILA</i> Evolution; International Journal of Organic Evolution, 1972, 26, 513-522.	1.1	7
173	MAINTENANCE OF GENETIC VARIATION WITH A FREQUENCY-DEPENDENT SELECTION MODEL AS COMPARED TO THE OVERDOMINANT MODEL. Genetics, 1972, 72, 771-775.	1.2	32
174	A NEW APPROACH TO MEASURING GENETIC SIMILARITY. Evolution; International Journal of Organic Evolution, 1971, 25, 276-280.	1.1	117
175	ROLE OF LINKAGE IN GENE FREQUENCY CHANGE OF COAT COLOR ALLELES IN MICE. Genetics, 1968, 58, 297-303	1.2	9