
Vadim E Fraifeld

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4561920/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human Ageing Genomic Resources: new and updated databases. Nucleic Acids Research, 2018, 46, D1083-D1090.	14.5	511
2	Human Ageing Genomic Resources: Integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Research, 2012, 41, D1027-D1033.	14.5	467
3	The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Research Reviews, 2013, 12, 661-684.	10.9	290
4	A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biology, 2020, 21, 91.	8.8	177
5	The Human Ageing Genomic Resources: online databases and tools for biogerontologists. Aging Cell, 2009, 8, 65-72.	6.7	173
6	Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients. Aging, 2015, 7, 664-672.	3.1	132
7	Gadd45 proteins: Relevance to aging, longevity and age-related pathologies. Ageing Research Reviews, 2012, 11, 51-66.	10.9	126
8	The DrugAge database of aging-related drugs. Aging Cell, 2017, 16, 594-597.	6.7	121
9	Molecular links between cellular senescence, longevity and age-related diseases – a systems biology perspective. Aging, 2011, 3, 1178-1191.	3.1	119
10	Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging, 2015, 7, 616-628.	3.1	93
11	LongevityMap: a database of human genetic variants associated with longevity. Trends in Genetics, 2013, 29, 559-560.	6.7	92
12	The signaling hubs at the crossroad of longevity and age-related disease networks. International Journal of Biochemistry and Cell Biology, 2009, 41, 516-520.	2.8	91
13	Longevity network: Construction and implications. Mechanisms of Ageing and Development, 2007, 128, 117-124.	4.6	84
14	The NetAge database: a compendium of networks for longevity, age-related diseases and associated processes. Biogerontology, 2010, 11, 513-522.	3.9	71
15	Common gene signature of cancer and longevity. Mechanisms of Ageing and Development, 2009, 130, 33-39.	4.6	52
16	Prediction of C. elegans Longevity Genes by Human and Worm Longevity Networks. PLoS ONE, 2012, 7, e48282.	2.5	49
17	Glutathione S-transferase hGSTM3 and ageing-associated neurodegeneration: relationship to Alzheimer's disease. Mechanisms of Ageing and Development, 2005, 126, 309-315.	4.6	45
18	Chapter 9 Brain eicosanoids and LPS fever: species and age differences. Progress in Brain Research, 1998, 115, 141-157.	1.4	43

VADIM E FRAIFELD

#	Article	IF	CITATIONS
19	Wideâ€scale comparative analysis of longevity genes and interventions. Aging Cell, 2017, 16, 1267-1275.	6.7	39
20	Do Mitochondrial DNA and Metabolic Rate Complement Each Other in Determination of the Mammalian Maximum Longevity?. Rejuvenation Research, 2008, 11, 409-417.	1.8	37
21	The role of cellular senescence in aging through the prism of Koch-like criteria. Ageing Research Reviews, 2018, 41, 18-33.	10.9	36
22	Senescing Cells Share Common Features with Dedifferentiating Cells. Rejuvenation Research, 2009, 12, 435-443.	1.8	35
23	Transplantation of mesenchymal stem cells reverses behavioural deficits and impaired neurogenesis caused by prenatal exposure to valproic acid. Oncotarget, 2017, 8, 17443-17452.	1.8	35
24	Cellular Senescence Markers p16INK4a and p21CIP1/WAF Are Predictors of Hodgkin Lymphoma Outcome. Clinical Cancer Research, 2015, 21, 5164-5172.	7.0	33
25	MicroRNA-Regulated Protein–Protein Interaction Networks: How Could They Help in Searching for Pro-Longevity Targets?. Rejuvenation Research, 2010, 13, 373-377.	1.8	30
26	Non-prostaglandin eicosanoids in fever and anapyrexia. Frontiers in Bioscience - Landmark, 2004, 9, 3339.	3.0	29
27	Is hypothalamic prostaglandin E2 involved in avian fever?. Life Sciences, 1995, 56, 1343-1346.	4.3	28
28	Gray whale transcriptome reveals longevity adaptations associated with DNA repair and ubiquitination. Aging Cell, 2020, 19, e13158.	6.7	27
29	From Disease-Oriented to Aging/Longevity-Oriented Studies. Rejuvenation Research, 2006, 9, 207-210.	1.8	25
30	MitoAge: a database for comparative analysis of mitochondrial DNA, with a special focus on animal longevity. Nucleic Acids Research, 2016, 44, D1262-D1265.	14.5	25
31	ls rate of skin wound healing associated with aging or longevity phenotype?. Biogerontology, 2011, 12, 591-597.	3.9	24
32	Superoxide dismutase, catalase and glutathione peroxidase activities in the liver of young and old mice: linear regression and correlation. Archives of Gerontology and Geriatrics, 2002, 35, 205-214.	3.0	23
33	Evidence supporting involvement of leukotrienes in LPS-induced hypothermia in mice. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R52-R58.	1.8	21
34	Tissue repair genes: the TiRe database and its implication for skin wound healing. Oncotarget, 2016, 7, 21145-21155.	1.8	20
35	Telomere length and body temperature—independent determinants of mammalian longevity?. Frontiers in Genetics, 2013, 4, 111.	2.3	19
36	A review of the biomedical innovations for healthy longevity. Aging, 2017, 9, 7-25.	3.1	18

VADIM E FRAIFELD

#	Article	IF	CITATIONS
37	p66ShcA and ageing: modulation by longevity-promoting agent aurintricarboxylic acid. Mechanisms of Ageing and Development, 2005, 126, 249-254.	4.6	17
38	Linking cell polarity, aging and rejuvenation. Biogerontology, 2011, 12, 167-175.	3.9	17
39	The role of Hsp90 in cell response to hyperthermia. Journal of Thermal Biology, 2004, 29, 509-514.	2.5	16
40	Mitochondrial Genome Anatomy and Species-Specific Lifespan. Rejuvenation Research, 2006, 9, 223-226.	1.8	16
41	SynergyAge, a curated database for synergistic and antagonistic interactions of longevity-associated genes. Scientific Data, 2020, 7, 366.	5.3	16
42	Nimesulide prevents lipopolysaccharide-induced elevation in plasma tumor necrosis factor-Î \pm in rats. Life Sciences, 1998, 63, PL323-PL327.	4.3	15
43	Wound healing and longevity: Lessons from long-lived αMUPA mice. Aging, 2015, 7, 167-176.	3.1	14
44	Have We Reached the Point for In Vivo Rejuvenation?. Rejuvenation Research, 2008, 11, 489-492.	1.8	13
45	Metabolic remodelling of mice by hypoxic-hypercapnic environment: imitating the naked mole-rat. Biogerontology, 2020, 21, 143-153.	3.9	12
46	Uncovering the Geroprotective Potential of Medicinal Plants from the Judea Region of Israel. Rejuvenation Research, 2014, 17, 134-139.	1.8	11
47	De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus. BMC Evolutionary Biology, 2017, 17, 258.	3.2	11
48	c-Met as a new marker of cellular senescence. Aging, 2019, 11, 2889-2897.	3.1	11
49	Tolerance to lipopolysaccharide is not related to the ability of the hypothalamus to produce prostaglandin E2. Life Sciences, 1997, 61, 813-818.	4.3	10
50	Delayed febrile response in old rats is not associated with an inability of hypothalamus to produce prostaglandin E2. Mechanisms of Ageing and Development, 1995, 79, 137-140.	4.6	9
51	Transplantation of mesenchymal stem cells causes long-term alleviation of schizophrenia-like behaviour coupled with increased neurogenesis. Molecular Psychiatry, 2021, 26, 4448-4463.	7.9	9
52	Expression Profiling Suggests Loss of Surface Integrity and Failure of Regenerative Repair as Major Driving Forces for Chronic Obstructive Pulmonary Disease Progression. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 441-452.	2.9	9
53	NUMT ("New Mightyâ€) Hypothesis of Longevity. Rejuvenation Research, 2010, 13, 152-155.	1.8	8
54	Differential decrease in soluble and DNA-bound telomerase in senescent human fibroblasts. Biogerontology, 2017, 18, 525-533.	3.9	8

VADIM E FRAIFELD

#	Article	IF	CITATIONS
55	Small molecules for cell reprogramming: a systems biology analysis. Aging, 2021, 13, 25739-25762.	3.1	8
56	Preferential anti-proliferative activity of <i>Varthemia iphionoides</i> (<i>Chiliadenus iphinoides)</i> . Israel Journal of Plant Sciences, 2015, 62, 229-233.	0.5	7
57	ShcC proteins: Brain aging and beyond. Ageing Research Reviews, 2015, 19, 34-42.	10.9	7
58	Background radiation impacts human longevity and cancer mortality: reconsidering the linear no-threshold paradigm. Biogerontology, 2021, 22, 189-195.	3.9	7
59	Systems biology analysis of lung fibrosis-related genes in the bleomycin mouse model. Scientific Reports, 2021, 11, 19269.	3.3	7
60	Middle age enhances expression of innate immunity genes in a female mouse model of pulmonary fibrosis. Biogerontology, 2017, 18, 253-262.	3.9	6
61	Machine Learning Analysis of Longevity-Associated Gene Expression Landscapes in Mammals. International Journal of Molecular Sciences, 2021, 22, 1073.	4.1	6
62	Age-related diseases: common or diverse pathways?. Biogerontology, 2014, 15, 543-545.	3.9	4
63	Middle age has a significant impact on gene expression during skin wound healing in male mice. Biogerontology, 2016, 17, 763-770.	3.9	4
64	Co-regulation of polar mRNA transport and lifespan in budding yeast <i>Saccharomyces cerevisiae</i> . Cell Cycle, 2012, 11, 4275-4280.	2.6	3
65	Dietary restriction modifies fever response in aging rats. Archives of Gerontology and Geriatrics, 1997, 24, 133-140.	3.0	2
66	Hypercapnia-inducible factor: a hypothesis. Ageing & Longevity, 2021, 2, 27-31.	0.5	1
67	iPSCs-Induced Cellular Reprogramming. , 2019, , .		1
68	Correlative links between natural radiation and life expectancy in the US population. Biogerontology, 0, , .	3.9	1
69	In Memory of Amir Abramovich. Rejuvenation Research, 2011, 14, 105-106.	1.8	0