Isabelle Hug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4561875/publications.pdf

Version: 2024-02-01

623734 940533 1,201 16 14 16 citations g-index h-index papers 18 18 18 1553 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Definition of the bacterial N-glycosylation site consensus sequence. EMBO Journal, 2006, 25, 1957-1966.	7.8	314
2	Second messenger–mediated tactile response by a bacterial rotary motor. Science, 2017, 358, 531-534.	12.6	129
3	A Surface-Induced Asymmetric Program Promotes Tissue Colonization by Pseudomonas aeruginosa. Cell Host and Microbe, 2019, 25, 140-152.e6.	11.0	127
4	Bi-modal Distribution of the Second Messenger c-di-GMP Controls Cell Fate and Asymmetry during the Caulobacter Cell Cycle. PLoS Genetics, 2013, 9, e1003744.	3.5	123
5	Analogies and homologies in lipopolysaccharide and glycoprotein biosynthesis in bacteria. Glycobiology, 2011, 21, 138-151.	2.5	117
6	Helicobacter pylori Lipopolysaccharide Is Synthesized via a Novel Pathway with an Evolutionary Connection to Protein N-Glycosylation. PLoS Pathogens, 2010, 6, e1000819.	4.7	66
7	Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. ELife, 2017, 6, .	6.0	62
8	Crystal structure of <i>Caulobacter crescentus</i> polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly. Open Biology, 2012, 2, 120028.	3.6	52
9	Tad Pili Play a Dynamic Role in Caulobacter crescentus Surface Colonization. MBio, 2019, 10, .	4.1	44
10	Exploiting Bacterial Glycosylation Machineries for the Synthesis of a Lewis Antigen-containing Glycoprotein. Journal of Biological Chemistry, 2011, 286, 37887-37894.	3.4	37
11	Characterization of a Bifunctional Pyranose-Furanose Mutase from Campylobacter jejuni 11168. Journal of Biological Chemistry, 2010, 285, 493-501.	3.4	30
12	Cohesive Properties of the $<$ i>Caulobacter crescentus $<$ /i> Holdfast Adhesin Are Regulated by a Novel c-di-GMP Effector Protein. MBio, 2017, 8, .	4.1	29
13	In Vitro Activity of Neisseria meningitidis PglL O-Oligosaccharyltransferase with Diverse Synthetic Lipid Donors and a UDP-activated Sugar. Journal of Biological Chemistry, 2013, 288, 10578-10587.	3.4	22
14	In situ structure of the <i>Caulobacter crescentus</i> flagellar motor and visualization of binding of a CheYâ€homolog. Molecular Microbiology, 2020, 114, 443-453.	2.5	22
15	Identification of Hfq-binding RNAs in <i>Caulobacter crescentus</i> . RNA Biology, 2019, 16, 719-726.	3.1	14
16	The expression of virulence genes increases membrane permeability and sensitivity to envelope stress in Salmonella Typhimurium. PLoS Biology, 2022, 20, e3001608.	5.6	13