Victor L Temerev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4561624/publications.pdf

Version: 2024-02-01

933447 940533 50 343 10 16 citations h-index g-index papers 51 51 51 230 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Study on the metal-support interaction in the Ru/C catalysts under reductive conditions. Surfaces and Interfaces, 2018, 12, 95-101.	3.0	28
2	Effect of Ag loading onÂthe adsorption/desorption properties of ZSM-5 towards toluene. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 629-640.	1.7	23
3	Molybdenum carbide synthesized by mechanical activation an inert medium. Journal of Alloys and Compounds, 2017, 698, 1018-1027.	5 . 5	21
4	Carbon support hydrogenation in Pd/C catalysts during reductive thermal treatment. International Journal of Hydrogen Energy, 2018, 43, 17656-17663.	7.1	19
5	Synthesis and study of Ru–Ba–Cs/Sibunit ternary catalysts for ammonia synthesis. Russian Journal of Applied Chemistry, 2017, 90, 887-894.	0.5	18
6	Effect of the carbon support graphitization on the activity and thermal stability of Ru-Ba-Cs/C ammonia decomposition catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 85-102.	1.7	16
7	Methanation of the carbon supports of ruthenium ammonia synthesis catalysts: A review. Catalysis in Industry, 2016, 8, 341-347.	0.7	15
8	Acetylene Hydrogenation to Ethylene in a Hydrogen-Rich Gaseous Mixture on a Pd/Sibunit Catalyst. Kinetics and Catalysis, 2019, 60, 446-452.	1.0	15
9	EXAFS study of Pd/Ga2O3 model catalysts of selective liquid-phase hydrogenation of acetylene to ethylene. Journal of Molecular Catalysis A, 2012, 358, 152-158.	4.8	13
10	Carrying Agent Influence on the Ruthenium Catalyst Activity of the Ammonia Synthesis. Procedia Engineering, 2015, 113, 84-90.	1.2	12
11	Enhanced Adsorption Properties of Ag-Loaded \hat{l}^2 -Zeolite towards Toluene. Materials Science Forum, 0, 917, 180-184.	0.3	11
12	Ammonia decomposition Ru catalysts supported on alumina nanofibers for hydrogen generation. Materials Letters, 2022, 306, 130842.	2.6	11
13	The Influence of the Specific Surface Area of the Carbon Support on the Activity of Ruthenium Catalysts for the Ammonia-Decomposition Reaction. Kinetics and Catalysis, 2018, 59, 136-142.	1.0	10
14	Effect of high-temperature treatment of on the activity of Ru-Cs(Ba)/Sibunit catalysts in ammonia synthesis and their resistance to methanation. Diamond and Related Materials, 2020, 108, 107986.	3.9	10
15	Pd/Ga2O3–Al2O3 catalysts for the selective liquid-phase hydrogenation of acetylene to ethylene. Kinetics and Catalysis, 2016, 57, 490-496.	1.0	9
16	The effect of composition of the ruthenium precursors and heat treatment conditions on the activity of Ru-Ba/Sibunit catalysts for ammonia synthesis. Molecular Catalysis, 2017, 433, 235-241.	2.0	9
17	Mechanism of Pt interfacial interaction with carbonaceous support under reductive conditions. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 103-115.	1.7	9
18	Catalytic Coatings for Improving the Environmental Safety of Internal Combustion Engines. Procedia Engineering, 2016, 152, 59-66.	1.2	8

#	Article	IF	Citations
19	Pyrolysis of methane on oxide catalysts supported by resistive fechral and carborundum. Catalysis in Industry, 2017, 9, 181-188.	0.7	8
20	Study of the Influence Exerted by Zinc Additive on the Structure and Catalytic Properties of Pd/Al2O3 Catalysts for Liquid-Phase Hydrogenation of Acetylene. Russian Journal of Applied Chemistry, 2017, 90, 1908-1917.	0.5	8
21	Effect of the Modifier on the Catalytic Properties and Thermal Stability of Ru–Cs(Ba)/Sibunit Catalyst for Ammonia Decomposition. Kinetics and Catalysis, 2019, 60, 372-379.	1.0	8
22	Pyrolysis of methane on fechral resistive catalyst with additions of hydrogen or oxygen to the reaction mixture. Catalysis in Industry, 2015, 7, 171-174.	0.7	7
23	Purification of exhaust gases from gasoline engine using adsorption-catalytic systems. Part 1: trapping of hydrocarbons by Ag-modified ZSM-5. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 945-959.	1.7	6
24	The nature of modifying effect of gallium on Pd-Ga/Al2O3 catalyst for liquid-phase selective acetylene hydrogenation. Materials Letters, 2021, 305, 130843.	2.6	6
25	Liquid-Phase Hydrogenation of Acetylene to Ethylene in a Flow on Pd/Al2O3 and Pd-Ga/Al2O3 Catalysts in the Presence of CO. Russian Journal of Applied Chemistry, 2019, 92, 128-134.	0.5	5
26	Acetylene Hydrogenation on Pd–Zn/Sibunit Catalyst: Effect of Solvent and Carbon Monoxide. Petroleum Chemistry, 2021, 61, 490-497.	1.4	5
27	The influence of a carbon support on the catalytic properties of Pd/Sibunit and Pd-Ga/Sibunit catalysts for liquid-phase acetylene hydrogenation. Solid Fuel Chemistry, 2015, 49, 14-19.	0.7	4
28	Comparison of the activity of Ru-K/Sibunit catalysts in ammonia synthesis and decomposition. AIP Conference Proceedings, 2019, , .	0.4	4
29	Ethane pyrolysis on Al2O3, ZrO2, SiO2 oxides supported on fechral under conditions of resistive heating. AIP Conference Proceedings, 2019, , .	0.4	4
30	High-temperature modification of sibunit for its application as a support for ruthenium catalysts in ammonia synthesis. AIP Conference Proceedings, 2019, , .	0.4	3
31	The effect of FeCrAl spiral temperature on the interaction of methane and its pyrolysis products with ethane. AIP Conference Proceedings, 2019, , .	0.4	3
32	Plasma electrolytic oxide coatings on silumin for oxidation CO. AIP Conference Proceedings, 2017, , .	0.4	2
33	Methane pyrolysis on deposited resistive MeO x /carborundum catalysts, where MeO x is MgO, CaO, MgO/Al2O3, MgO/ZrO2, CaO/Al2O3, and CaO/ZrO2. Catalysis in Industry, 2017, 9, 277-282.	0.7	2
34	Pyrolysis of Methane on a Resistive ZrO2/SiC Catalyst. Russian Journal of Applied Chemistry, 2019, 92, 1258-1265.	0.5	2
35	Influence of Oxidative Treatment and Platinum Content on the Stability of the Pt/Sibunit System in an Oxidizing Atmosphere at Elevated Temperatures. Solid Fuel Chemistry, 2020, 54, 385-391.	0.7	2
36	Pyrolysis of Methane on Resistive MgO/SiC Catalyst. Russian Journal of Applied Chemistry, 2017, 90, 1939-1943.	0.5	1

3

#	Article	IF	CITATIONS
37	Comparative research of pyrolysis of light alkanes (methane and ethane) on the resistive FeCrAl catalyst. AIP Conference Proceedings, 2019, , .	0.4	1
38	Effect of Silver Addition on the Adsorption Properties of Y Zeolite. Materials Science Forum, 2020, 998, 108-113.	0.3	1
39	Methanation of Carbon Supports of Ruthenium Catalysts for Ammonia Synthesis. Review. Kataliz V Promyshlennosti, 2016, 16, 20-27.	0.3	1
40	Pyrolysis of Methane over Oxide Catalysts on Resistible Fechral and Carborundum Supports. Kataliz V Promyshlennosti, 2017, 17, 94-101.	0.3	1
41	Co-Conversion of Methane and Ethane over a Resistive Fechral Catalyst in the Presence of Oxygen. Petroleum Chemistry, $0, 1$.	1.4	1
42	Effect of the acidity of a zeolite and its modification with cerium and zirconium on the activity and thermal stability of Pd/beta in the reaction of deep toluene oxidation. Russian Journal of Applied Chemistry, 2009, 82, 32-37.	0.5	0
43	Resistance for methanation and activity in ammonia decomposition catalysts Ru-Rb/Sibunit. AIP Conference Proceedings, 2019, , .	0.4	0
44	Adsorption-catalytic properties of Ag-modified ZSM-23. AIP Conference Proceedings, 2019, , .	0.4	0
45	Study of the Interaction between Components at Different Stages of Preparing Ru–Rb/Sibunit Catalysts for the Decomposition of Ammonia. Russian Journal of Physical Chemistry A, 2020, 94, 2201-2208.	0.6	0
46	The effect of Sibunit graphitization on the stability of $Ru/(Pt, Pd)/Sibunit$ catalysts in an oxidizing atmosphere at elevated temperatures. Kataliz V Promyshlennosti, 2021, 1, 55-61.	0.3	0
47	Transformations of ethane and ethylene with methane on a resistive fechral catalyst in the presence of hydrogen. Kataliz V Promyshlennosti, 2021, 1, 62-66.	0.3	0
48	Effect of Sibunite Graphitization on the Stability of Ru (Pt, Pd)/Sibunit Catalysts in an Oxidizing Atmosphere at Elevated Temperatures. Catalysis in Industry, 2021, 13, 252-257.	0.7	0
49	Conversions of Ethane and Ethylene with Methane on a Resistive Fechral Catalyst in the Presence of Hydrogen. Catalysis in Industry, 2021, 13, 258-262.	0.7	0
50	The influence of high-temperature treatment of the carbon support Sibunit and the content of ruthenium on the activity of Ru-Cs/C catalysts for ammonia synthesis. AIP Conference Proceedings, 2020, , .	0.4	0