
## MÃ<sup>3</sup>nica M. Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4561535/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Variants in ADD1 cause intellectual disability, corpus callosum dysgenesis, and ventriculomegaly in humans. Genetics in Medicine, 2022, 24, 319-331.                                  | 1.1 | 6         |
| 2  | Rewired glycosylation activity promotes scarless regeneration and functional recovery in spiny mice after complete spinal cord transection. Developmental Cell, 2022, 57, 440-450.e7. | 3.1 | 26        |
| 3  | Sensory neurons have an axon initial segment that initiates spontaneous activity in neuropathic pain.<br>Brain, 2022, 145, 1632-1640.                                                 | 3.7 | 11        |
| 4  | Coronal brain atlas in stereotaxic coordinates of the African spiny mouse, <i>Acomys cahirinus</i> .<br>Journal of Comparative Neurology, 2022, , .                                   | 0.9 | 1         |
| 5  | The cytoskeleton as a modulator of tension driven axon elongation. Developmental Neurobiology, 2021, 81, 300-309.                                                                     | 1.5 | 6         |
| 6  | Microtubules, actin and cytolinkers: how to connect cytoskeletons in the neuronal growth cone.<br>Neuroscience Letters, 2021, 747, 135693.                                            | 1.0 | 16        |
| 7  | The role of the membrane-associated periodic skeleton in axons. Cellular and Molecular Life Sciences, 2021, 78, 5371-5379.                                                            | 2.4 | 3         |
| 8  | Actin dynamics in the growth cone: a key player in axon regeneration. Current Opinion in<br>Neurobiology, 2021, 69, 11-18.                                                            | 2.0 | 16        |
| 9  | Transthyretin Promotes Axon Growth via Regulation of Microtubule Dynamics and Tubulin<br>Acetylation. Frontiers in Cell and Developmental Biology, 2021, 9, 747699.                   | 1.8 | 6         |
| 10 | Bidirectional flow of action potentials in axons drives activity dynamics in neuronal cultures.<br>Journal of Neural Engineering, 2021, 18, 066045.                                   | 1.8 | 11        |
| 11 | Profilin as a dual regulator of actin and microtubule dynamics. Cytoskeleton, 2020, 77, 76-83.                                                                                        | 1.0 | 29        |
| 12 | Non-Muscle Myosin II in Axonal Cell Biology: From the Growth Cone to the Axon Initial Segment.<br>Cells, 2020, 9, 1961.                                                               | 1.8 | 17        |
| 13 | Profilin 1 delivery tunes cytoskeletal dynamics toward CNS axon regeneration. Journal of Clinical<br>Investigation, 2020, 130, 2024-2040.                                             | 3.9 | 30        |
| 14 | The membrane periodic skeleton is an actomyosin network that regulates axonal diameter and conduction. ELife, 2020, 9, .                                                              | 2.8 | 53        |
| 15 | Effects of early intravesical administration of resiniferatoxin to spinal cordâ€injured rats in neurogenic detrusor overactivity. Neurourology and Urodynamics, 2019, 38, 1540-1550.  | 0.8 | 11        |
| 16 | Hydrogel-Assisted Antisense LNA Gapmer Delivery for In Situ Gene Silencing in Spinal Cord Injury.<br>Molecular Therapy - Nucleic Acids, 2018, 11, 393-406.                            | 2.3 | 13        |
| 17 | The Regulation of Axon Diameter: From Axonal Circumferential Contractility to Activity-Dependent<br>Axon Swelling. Frontiers in Molecular Neuroscience, 2018, 11, 319.                | 1.4 | 48        |
| 18 | The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function.<br>Progress in Neurobiology, 2018, 168, 86-103.                                  | 2.8 | 88        |

| #  | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | <scp>N</scp> euronal <scp>I</scp> ntrinsic <scp>R</scp> egenerative <scp>C</scp> apacity:<br><scp>T</scp> he <scp>I</scp> mpact of <scp>M</scp> icrotubule <scp>O</scp> rganization and<br><scp>A</scp> xonal <scp>T</scp> ransport. Developmental Neurobiology, 2018, 78, 952-959. | 1.5 | 17        |
| 20 | Transthyretin neuroprotection in Alzheimer's disease is dependent on proteolysis. Neurobiology of Aging, 2017, 59, 10-14.                                                                                                                                                           | 1.5 | 46        |
| 21 | Fibrin functionalization with synthetic adhesive ligands interacting with α6β1 integrin receptor<br>enhance neurite outgrowth of embryonic stem cell-derived neural stem/progenitors. Acta<br>Biomaterialia, 2017, 59, 243-256.                                                     | 4.1 | 20        |
| 22 | The Dyslexia-susceptibility Protein KIAA0319 Inhibits Axon Growth Through Smad2 Signaling. Cerebral<br>Cortex, 2017, 27, 1732-1747.                                                                                                                                                 | 1.6 | 29        |
| 23 | The neuronal and actin commitment: Why do neurons need rings?. Cytoskeleton, 2016, 73, 424-434.                                                                                                                                                                                     | 1.0 | 22        |
| 24 | The cytoskeleton as a novel therapeutic target for old neurodegenerative disorders. Progress in Neurobiology, 2016, 141, 61-82.                                                                                                                                                     | 2.8 | 92        |
| 25 | Axonal pathology in <scp>K</scp> rabbe's disease: The cytoskeleton as an emerging therapeutic target.<br>Journal of Neuroscience Research, 2016, 94, 1037-1041.                                                                                                                     | 1.3 | 10        |
| 26 | The Actin-Binding Protein α-Adducin Is Required for Maintaining Axon Diameter. Cell Reports, 2016, 15, 490-498.                                                                                                                                                                     | 2.9 | 95        |
| 27 | Myelin Lipids Inhibit Axon Regeneration Following Spinal Cord Injury: a Novel Perspective for Therapy.<br>Molecular Neurobiology, 2016, 53, 1052-1064.                                                                                                                              | 1.9 | 23        |
| 28 | Inhibitory Injury Signaling Represses Axon Regeneration After Dorsal Root Injury. Molecular<br>Neurobiology, 2016, 53, 4596-4605.                                                                                                                                                   | 1.9 | 23        |
| 29 | Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons. Brain Structure and Function, 2016, 221, 2777-2799.                                                                                                       | 1.2 | 39        |
| 30 | The Role of Brain-Derived Neurotrophic Factor (BDNF) in the Development of Neurogenic Detrusor Overactivity (NDO). Journal of Neuroscience, 2015, 35, 2146-2160.                                                                                                                    | 1.7 | 38        |
| 31 | Cell intrinsic control of axon regeneration. EMBO Reports, 2014, 15, 254-263.                                                                                                                                                                                                       | 2.0 | 135       |
| 32 | Neuronal deletion of GSK3Î <sup>2</sup> increases microtubule speed in the growth cone and enhances axon regeneration via CRMP-2 and independently of MAP1B and CLASP2. BMC Biology, 2014, 12, 47.                                                                                  | 1.7 | 72        |
| 33 | Early axonal loss accompanied by impaired endocytosis, abnormal axonal transport, and decreased<br>microtubule stability occur in the model of Krabbe's disease. Neurobiology of Disease, 2014, 66, 92-103.                                                                         | 2.1 | 55        |
| 34 | CNS Axons Globally Increase Axonal Transport after Peripheral Conditioning. Journal of Neuroscience, 2014, 34, 5965-5970.                                                                                                                                                           | 1.7 | 70        |
| 35 | Primary Bone Marrow Mesenchymal Stromal Cells Rescue the Axonal Phenotype of Twitcher Mice. Cell<br>Transplantation, 2014, 23, 239-252.                                                                                                                                             | 1.2 | 9         |
| 36 | Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination.<br>Journal of Clinical Investigation, 2014, 124, 2560-2570.                                                                                                                           | 3.9 | 103       |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Advances and Pitfalls of Cell Therapy in Metabolic Leukodystrophies. Cell Transplantation, 2013, 22, 189-204.                                                                  | 1.2 | 17        |
| 38 | Transthyretin is a metallopeptidase with an inducible active site. Biochemical Journal, 2012, 443, 769-778.                                                                    | 1.7 | 40        |
| 39 | Regenerative medicine for the treatment of spinal cord injury: more than just promises?. Journal of<br>Cellular and Molecular Medicine, 2012, 16, 2564-2582.                   | 1.6 | 64        |
| 40 | Systemic Delivery of Bone Marrow-Derived Mesenchymal Stromal Cells Diminishes Neuropathology in a Mouse Model of Krabbe's Disease. Stem Cells, 2011, 29, 1738-1751.            | 1.4 | 24        |
| 41 | Aboard transthyretin: From transport to cleavage. IUBMB Life, 2010, 62, 429-435.                                                                                               | 1.5 | 42        |
| 42 | Neuropeptide Y expression and function during osteoblast differentiation – insights from transthyretin knockout mice. FEBS Journal, 2010, 277, 263-275.                        | 2.2 | 35        |
| 43 | Neuropeptide Y and osteoblast differentiation – the balance between the neuroâ€osteogenic network<br>and local control. FEBS Journal, 2010, 277, 3664-3674.                    | 2.2 | 47        |
| 44 | Transthyretin Internalization by Sensory Neurons Is Megalin Mediated and Necessary for Its Neuritogenic Activity. Journal of Neuroscience, 2009, 29, 3220-3232.                | 1.7 | 118       |
| 45 | Neurophysiological, behavioral and morphological abnormalities in the Fabry knockout mice.<br>Neurobiology of Disease, 2009, 33, 48-56.                                        | 2.1 | 43        |
| 46 | NPY revealed as a critical modulator of osteoblast function in vitro: New insights into the role of Y1 and Y2 receptors. Journal of Cellular Biochemistry, 2009, 107, 908-916. | 1.2 | 75        |
| 47 | Transthyretin: More than meets the eye. Progress in Neurobiology, 2009, 89, 266-276.                                                                                           | 2.8 | 66        |
| 48 | Transthyretin knockout mice display decreased susceptibility to AMPA-induced neurodegeneration.<br>Neurochemistry International, 2009, 55, 454-457.                            | 1.9 | 9         |
| 49 | Chapter 17 Transthyretin. International Review of Neurobiology, 2009, 87, 337-346.                                                                                             | 0.9 | 16        |
| 50 | Substrate specificity of transthyretin: identification of natural substrates in the nervous system.<br>Biochemical Journal, 2009, 419, 467-474.                                | 1.7 | 45        |
| 51 | Transthyretin in peripheral nerve regeneration. Future Neurology, 2009, 4, 723-730.                                                                                            | 0.9 | 3         |
| 52 | Transthyretin Null Mice as a Model to Study the Involvement of Transthyretin in Neurobiology: From Neuropeptide Processing to Nerve Regeneration. , 2009, , 311-328.           |     | 1         |
| 53 | Transthyretin knockout mouse nerves have increased lipoprotein lipase and sphingolipid content following crush. Neuroscience Letters, 2008, 446, 83-87.                        | 1.0 | 6         |
| 54 | Transthyretin is not expressed by dorsal root ganglia cells. Experimental Neurology, 2008, 214, 362-365.                                                                       | 2.0 | 15        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | ApoA-I cleaved by transthyretin has reduced ability to promote cholesterol efflux and increased amyloidogenicity. Journal of Lipid Research, 2007, 48, 2385-2395.                                                              | 2.0 | 64        |
| 56 | Transthyretin enhances nerve regeneration. Journal of Neurochemistry, 2007, 103, 831-839.                                                                                                                                      | 2.1 | 118       |
| 57 | Increase in Ghrelin Levels After Weight Loss in Obese Zucker Rats is Prevented by Gastric Banding.<br>Obesity Surgery, 2007, 17, 1599-1607.                                                                                    | 1.1 | 19        |
| 58 | In vitro inhibition of transthyretin aggregate-induced cytotoxicity by full and peptide derived forms of the soluble receptor for advanced glycation end products (RAGE). FEBS Letters, 2006, 580, 3451-3456.                  | 1.3 | 24        |
| 59 | Activation of ERK1/2 MAP kinases in Familial Amyloidotic Polyneuropathy. Journal of Neurochemistry, 2006, 97, 151-161.                                                                                                         | 2.1 | 52        |
| 60 | Transthyretin knockouts are a new mouse model for increased neuropeptide Y. FASEB Journal, 2006, 20, 166-168.                                                                                                                  | 0.2 | 62        |
| 61 | Deciphering cryptic proteases. Cellular and Molecular Life Sciences, 2005, 62, 989-1002.                                                                                                                                       | 2.4 | 16        |
| 62 | Upâ€regulation of the extracellular matrix remodeling genes, biglycan, neutrophil gelatinaseâ€associated<br>lipocalin and matrix metalloproteinaseâ€9 in familial amyloid polyneuropathy. FASEB Journal, 2005, 19,<br>124-126. | 0.2 | 67        |
| 63 | Transthyretin, a New Cryptic Protease. Journal of Biological Chemistry, 2004, 279, 21431-21438.                                                                                                                                | 1.6 | 76        |
| 64 | Deposition and passage of transthyretin through the blood-nerve barrier in recipients of familial amyloid polyneuropathy livers. Laboratory Investigation, 2004, 84, 865-873.                                                  | 1.7 | 64        |
| 65 | Familial Amyloidotic Polyneuropathy: Protein Aggregation in the Peripheral Nervous System. Journal of Molecular Neuroscience, 2004, 23, 035-040.                                                                               | 1.1 | 14        |
| 66 | Neurodegeneration in familial amyloid polyneuropathy: from pathology to molecular signaling.<br>Progress in Neurobiology, 2003, 71, 385-400.                                                                                   | 2.8 | 116       |
| 67 | Central role of RAGE-dependent neointimal expansion in arterial restenosis. Journal of Clinical Investigation, 2003, 111, 959-972.                                                                                             | 3.9 | 287       |
| 68 | Evidence for Early Cytotoxic Aggregates in Transgenic Mice for Human Transthyretin Leu55Pro.<br>American Journal of Pathology, 2002, 161, 1935-1948.                                                                           | 1.9 | 98        |
| 69 | Deposition of Transthyretin in Early Stages of Familial Amyloidotic Polyneuropathy. American Journal of Pathology, 2001, 159, 1993-2000.                                                                                       | 1.9 | 303       |
| 70 | Familial Amyloid Polyneuropathy: Receptor for Advanced Glycation End Products-Dependent<br>Triggering of Neuronal Inflammatory and Apoptotic Pathways. Journal of Neuroscience, 2001, 21,<br>7576-7586.                        | 1.7 | 190       |
| 71 | Internalization of Transthyretin. Journal of Biological Chemistry, 2001, 276, 14420-14425.                                                                                                                                     | 1.6 | 61        |
| 72 | Interaction of the Receptor for Advanced Glycation End Products (RAGE) with Transthyretin Triggers<br>Nuclear Transcription Factor kB (NF-kB) Activation. Laboratory Investigation, 2000, 80, 1101-1110.                       | 1.7 | 156       |

| #  | ARTICLE                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Evidence for the Role of Megalin in Renal Uptake of Transthyretin. Journal of Biological Chemistry, 2000, 275, 38176-38181.                                                                  | 1.6 | 109       |
| 74 | Apolipoprotein AI and Transthyretin as Components of Amyloid Fibrils in a Kindred with apoAI<br>Leu178His Amyloidosis. American Journal of Pathology, 2000, 156, 1911-1917.                  | 1.9 | 94        |
| 75 | Transthyretin in high density lipoproteins: association with apolipoprotein A-I. Journal of Lipid<br>Research, 2000, 41, 58-65.                                                              | 2.0 | 75        |
| 76 | The Transfer of Retinol from Serum Retinol-binding Protein to Cellular Retinol-binding Protein Is<br>Mediated by a Membrane Receptor. Journal of Biological Chemistry, 1998, 273, 3336-3342. | 1.6 | 99        |