Marie Larsson, LiU

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4561434/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Specific T-cell responses for guiding treatment with convalescent plasma in severe COVID-19 and humoral immunodeficiency: a case report. BMC Infectious Diseases, 2022, 22, 362.	2.9	6
2	SARS-CoV-2 Specific Antibody Response and T Cell-Immunity in Immunocompromised Patients up to Six Months Post COVID: A Pilot Study. Journal of Clinical Medicine, 2022, 11, 3535.	2.4	2
3	Asymptomatic SARS-CoV-2 infection: is it all about being refractile to innate immune sensing of viral spare-parts?—Clues from exotic animal reservoirs. Pathogens and Disease, 2021, 79, .	2.0	7
4	Chronic inflammation involves CCL11 and IL-13 to facilitate the development of liver cirrhosis and fibrosis in chronic hepatitis B virus infection. Scandinavian Journal of Clinical and Laboratory Investigation, 2021, 81, 147-159.	1.2	11
5	Complement-Opsonized HIV Modulates Pathways Involved in Infection of Cervical Mucosal Tissues: A Transcriptomic and Proteomic Study. Frontiers in Immunology, 2021, 12, 625649.	4.8	2
6	HIV-Infected Individuals on ART With Impaired Immune Recovery Have Altered Plasma Metabolite Profiles. Open Forum Infectious Diseases, 2021, 8, ofab288.	0.9	12
7	Comparison of Surrogate Markers of the Type I Interferon Response and Their Ability to Mirror Disease Activity in Systemic Lupus Erythematosus. Frontiers in Immunology, 2021, 12, 688753.	4.8	12
8	MAIT Cells Balance the Requirements for Immune Tolerance and Anti-Microbial Defense During Pregnancy. Frontiers in Immunology, 2021, 12, 718168.	4.8	9
9	Comparative expression of pro-inflammatory and apoptotic biosignatures in chronic HBV-infected patients with and without liver cirrhosis. Microbial Pathogenesis, 2021, 161, 105231.	2.9	9
10	Soluble Urokinase Plasminogen Activator Receptor (suPAR) Independently Predicts Severity and Length of Hospitalisation in Patients With COVID-19. Frontiers in Medicine, 2021, 8, 791716.	2.6	27
11	MAIT cells in hepatitis B virus infection – Diplomatic front-runners in the fight against HBV disease. Critical Reviews in Immunology, 2021, 41, 1-16.	0.5	1
12	Efferocytosis of Apoptotic Neutrophils Enhances Control of <i>Mycobacterium tuberculosis</i> in HIV-Coinfected Macrophages in a Myeloperoxidase-Dependent Manner. Journal of Innate Immunity, 2020, 12, 235-247.	3.8	12
13	Peripheral Follicular T Helper Cells and Mucosal-Associated Invariant T Cells Represent Activated Phenotypes During the Febrile Phase of Acute Dengue Virus Infection. Viral Immunology, 2020, 33, 610-615.	1.3	1
14	Brief Report: Diminished Coinhibitory Molecule 2B4 Expression Is Associated With Preserved iNKT Cell Phenotype in HIV Long-Term Nonprogressors. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 85, 73-78.	2.1	0
15	Could SARS-CoV-2-Induced Hyperinflammation Magnify the Severity of Coronavirus Disease (CoViD-19) Leading to Acute Respiratory Distress Syndrome?. Frontiers in Immunology, 2020, 11, 1206.	4.8	67
16	Plasma protein profiling reflects TH1-driven immune dysregulation in common variable immunodeficiency. Journal of Allergy and Clinical Immunology, 2020, 146, 417-428.	2.9	22
17	Complement opsonization of HIV affects primary infection of human colorectal mucosa and subsequent activation of T cells. ELife, 2020, 9, .	6.0	5
18	Immune Biomarkers for Diagnosis and Treatment Monitoring of Tuberculosis: Current Developments and Future Prospects. Frontiers in Microbiology, 2019, 10, 2789.	3.5	66

#	Article	IF	CITATIONS
19	HSV-2 Cellular Programming Enables Productive HIV Infection in Dendritic Cells. Frontiers in Immunology, 2019, 10, 2889.	4.8	7
20	HIV Interferes with the Dendritic Cell–T Cell Axis of Macrophage Activation by ShiftingMycobacterium tuberculosis–Specific CD4 T Cells into a Dysfunctional Phenotype. Journal of Immunology, 2019, 202, 816-826.	0.8	9
21	Understanding Immune Senescence, Exhaustion, and Immune Activation in HIV–Tuberculosis Coinfection. , 2019, , 1819-1833.		О
22	T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Frontiers in Immunology, 2018, 9, 2569.	4.8	241
23	Viral Persistence and Chronicity in Hepatitis C Virus Infection: Role of T-Cell Apoptosis, Senescence and Exhaustion. Cells, 2018, 7, 165.	4.1	27
24	Hyper-Expression of PD-1 Is Associated with the Levels of Exhausted and Dysfunctional Phenotypes of Circulating CD161++TCR iVα7.2+ Mucosal-Associated Invariant T Cells in Chronic Hepatitis B Virus Infection. Frontiers in Immunology, 2018, 9, 472.	4.8	78
25	Complement-Opsonized HIV-1 Alters Cross Talk Between Dendritic Cells and Natural Killer (NK) Cells to Inhibit NK Killing and to Upregulate PD-1, CXCR3, and CCR4 on T Cells. Frontiers in Immunology, 2018, 9, 899.	4.8	11
26	Human IgM monoclonal antibodies block HIV-transmission to immune cells in cervico-vaginal tissues and across polarized epithelial cells in vitro. Scientific Reports, 2018, 8, 10180.	3.3	8
27	Understanding Immune Senescence, Exhaustion, and Immune Activation in HIV–Tuberculosis Coinfection. , 2018, , 1-15.		0
28	CD8+ T cells of chronic HCV-infected patients express multiple negative immune checkpoints following stimulation with HCV peptides. Cellular Immunology, 2017, 313, 1-9.	3.0	22
29	Decrease of CD69 levels on TCR Vα7.2 ⁺ CD4 ⁺ innate-like lymphocytes is associated with impaired cytotoxic functions in chronic hepatitis B virus-infected patients. Innate Immunity, 2017, 23, 459-467.	2.4	49
30	Negative Checkpoint Regulatory Molecule 2B4 (CD244) Upregulation Is Associated with Invariant Natural Killer T Cell Alterations and Human Immunodeficiency Virus Disease Progression. Frontiers in Immunology, 2017, 8, 338.	4.8	20
31	HIV/Human herpesvirus co-infections: Impact on tryptophan-kynurenine pathway and immune reconstitution. PLoS ONE, 2017, 12, e0186000.	2.5	21
32	Peripheral loss of <scp>CD</scp> 8 ⁺ <scp>CD</scp> 161 ⁺⁺ <scp>TCRV</scp> α7·2 ⁺ mucosalâ€associated invariant T cells in chronic hepatitis C virusâ€infected patients. European Journal of Clinical Investigation, 2016, 46, 170-180.	3.4	75
33	Autophagy induction targeting mTORC1 enhances Mycobacterium tuberculosis replication in HIV co-infected human macrophages. Scientific Reports, 2016, 6, 28171.	3.3	54
34	Aberrant Inflammasome Activation Characterizes Tuberculosis-Associated Immune Reconstitution Inflammatory Syndrome. Journal of Immunology, 2016, 196, 4052-4063.	0.8	67
35	HIV Interferes with Mycobacterium tuberculosis Antigen Presentation in Human Dendritic Cells. American Journal of Pathology, 2016, 186, 3083-3093.	3.8	15
36	Functional role of mucosal-associated invariant T cells in HIV infection. Journal of Leukocyte Biology, 2016, 100, 305-314.	3.3	40

#	Article	IF	CITATIONS
37	Complement Opsonization Promotes Herpes Simplex Virus 2 Infection of Human Dendritic Cells. Journal of Virology, 2016, 90, 4939-4950.	3.4	15
38	MicroRNA-199a and -214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor. Oncotarget, 2016, 7, 16396-16408.	1.8	72
39	Attrition of TCR Vα7.2+ CD161++ MAIT Cells in HIV-Tuberculosis Co-Infection Is Associated with Elevated Levels of PD-1 Expression. PLoS ONE, 2015, 10, e0124659.	2.5	85
40	Enhanced anti-tumor immune responses and delay of tumor development in human epidermal growth factor receptor 2 mice immunized with an immunostimulatory peptide in poly(D,L-lactic-co-glycolic) acid nanoparticles. Breast Cancer Research, 2015, 17, 48.	5.0	17
41	Increased frequency of lateâ€senescent <scp>T</scp> cells lacking <scp>CD</scp> 127 in chronic hepatitis <scp>C</scp> disease. European Journal of Clinical Investigation, 2015, 45, 466-474.	3.4	17
42	Chronic hepatitis C virus infection triggers spontaneous differential expression of biosignatures associated with T cell exhaustion and apoptosis signaling in peripheral blood mononucleocytes. Apoptosis: an International Journal on Programmed Cell Death, 2015, 20, 466-480.	4.9	41
43	Concurrent loss of co-stimulatory molecules and functional cytokine secretion attributes leads to proliferative senescence of CD8+ T cells in HIV/TB co-infection. Cellular Immunology, 2015, 297, 19-32.	3.0	13
44	Role of PD-1 co-inhibitory pathway in HIV infection and potential therapeutic options. Retrovirology, 2015, 12, 14.	2.0	119
45	Regulation of CD8+ T-cell cytotoxicity in HIV-1 infection. Cellular Immunology, 2015, 298, 126-133.	3.0	21
46	Impaired NK Cell Activation and Chemotaxis toward Dendritic Cells Exposed to Complement-Opsonized HIV-1. Journal of Immunology, 2015, 195, 1698-1704.	0.8	13
47	Mechanistic insights on immunosenescence and chronic immune activation in HIV-tuberculosis co-infection. World Journal of Virology, 2015, 4, 17.	2.9	10
48	TLR4-dependent activation of dendritic cells by an HMGB1-derived peptide adjuvant. Journal of Translational Medicine, 2014, 12, 211.	4.4	75
49	HIV- <i>Mycobacterium tuberculosis</i> co-infection: a â€~danger-couple model' of disease pathogenesis. Pathogens and Disease, 2014, 70, 110-118.	2.0	65
50	Complement Opsonization of HIV-1 Results in Decreased Antiviral and Inflammatory Responses in Immature Dendritic Cells via CR3. Journal of Immunology, 2014, 193, 4590-4601.	0.8	44
51	Hepatitis C virus infection contributes to impregnation of markers of immune inhibition: potential preludes underlying viral latency and persistence. BMC Infectious Diseases, 2014, 14, .	2.9	Ο
52	Molecular signatures of T-cell inhibition in HIV-1 infection. Retrovirology, 2013, 10, 31.	2.0	97
53	Vitamin D enhances IL-1Î ² secretion and restricts growth of Mycobacterium tuberculosis in macrophages from TB patients. International Journal of Mycobacteriology, 2013, 2, 18-25.	0.6	27
54	Complement opsonization of HIV â€1 results in a different intracellular processing pattern and enhanced MHC class I presentation by dendritic cells. European Journal of Immunology, 2013, 43, 1470-1483.	2.9	18

Marie Larsson, LiU

#	Article	IF	CITATIONS
55	Blocking of integrins inhibits <scp>HIV</scp> â€1 infection of human cervical mucosa immune cells with free and complementâ€opsonized virions. European Journal of Immunology, 2013, 43, 2361-2372.	2.9	23
56	Endocineâ,,¢, N3OA and N3OASq; Three Mucosal Adjuvants That Enhance the Immune Response to Nasal Influenza Vaccination. PLoS ONE, 2013, 8, e70527.	2.5	17
57	IL-1α Expression in Pancreatic Ductal Adenocarcinoma Affects the Tumor Cell Migration and Is Regulated by the p38MAPK Signaling Pathway. PLoS ONE, 2013, 8, e70874.	2.5	34
58	The Role of MicroRNA-200 in Progression of Human Colorectal and Breast Cancer. PLoS ONE, 2013, 8, e84815.	2.5	42
59	p38 Mitogen-Activated Protein Kinase/Signal Transducer and Activator of Transcription-3 Pathway Signaling Regulates Expression of Inhibitory Molecules in T Cells Activated by HIV-1-Exposed Dendritic Cells. Molecular Medicine, 2012, 18, 1169-1182.	4.4	40
60	Interleukin $1\hat{l}\pm$ Sustains the Expression of Inflammatory Factors in Human Pancreatic Cancer Microenvironment by Targeting Cancer-Associated Fibroblasts. Neoplasia, 2011, 13, 664-IN3.	5.3	95
61	Expression of a Broad Array of Negative Costimulatory Molecules and Blimp-1 in T Cells following Priming by HIV-1 Pulsed Dendritic Cells. Molecular Medicine, 2011, 17, 229-240.	4.4	53
62	Targeting HIV-1 innate immune responses therapeutically. Current Opinion in HIV and AIDS, 2011, 6, 435-443.	3.8	11
63	The Desmoplastic Stroma Plays an Essential Role in the Accumulation and Modulation of Infiltrated Immune Cells in Pancreatic Adenocarcinoma. Clinical and Developmental Immunology, 2011, 2011, 1-12.	3.3	80
64	Complement Opsonization of HIV-1 Enhances the Uptake by Dendritic Cells and Involves the Endocytic Lectin and Integrin Receptor Families. PLoS ONE, 2011, 6, e23542.	2.5	29
65	Evidence of dysregulation of dendritic cells in primary HIV infection. Blood, 2010, 116, 3839-3852.	1.4	159
66	Pancreatic adenocarcinoma exerts systemic effects on the peripheral blood myeloid and plasmacytoid dendritic cells: an indicator of disease severity?. BMC Cancer, 2010, 10, 87.	2.6	45
67	HIVâ€1 impairs <i>in vitro</i> priming of naÃ⁻ve T cells and gives rise to contactâ€dependent suppressor T cells. European Journal of Immunology, 2010, 40, 2248-2258.	2.9	38
68	Delivery of a peptide via poly(d,l-lactic-co-glycolic) acid nanoparticles enhances its dendritic cell–stimulatory capacity. Nanomedicine: Nanotechnology, Biology, and Medicine, 2010, 6, 651-661.	3.3	78
69	Semi Mature Blood Dendritic Cells Exist in Patients with Ductal Pancreatic Adenocarcinoma Owing to Inflammatory Factors Released from the Tumor. PLoS ONE, 2010, 5, e13441.	2.5	69
70	Dendritic cell activation by sensing Mycobacterium tuberculosis–induced apoptotic neutrophils via DC-SIGN. Human Immunology, 2010, 71, 535-540.	2.4	24
71	In Vitro Priming Recapitulates In Vivo HIV-1 Specific T Cell Responses, Revealing Rapid Loss of Virus Reactive CD4+ T Cells in Acute HIV-1 Infection. PLoS ONE, 2009, 4, e4256.	2.5	40
72	Pathways utilized by dendritic cells for binding, uptake, processing and presentation of antigens derived from HIV-1. European Journal of Immunology, 2007, 37, 1752-1763.	2.9	39

#	Article	IF	CITATIONS
73	The Dendritic Cell: The Immune System's Adjuvant–A Strategy To Develop a HCV Vaccine?. Gastroenterology, 2006, 130, 603-606.	1.3	6
74	HIV-1 and the hijacking of dendritic cells: a tug of war. Seminars in Immunopathology, 2005, 26, 309-328.	4.0	27
75	Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor- viral RNA interactions. Journal of Clinical Investigation, 2005, 115, 3265-3275.	8.2	573
76	Human Immunodeficiency Virus Type 1 Activates Plasmacytoid Dendritic Cells and Concomitantly Induces the Bystander Maturation of Myeloid Dendritic Cells. Journal of Virology, 2004, 78, 5223-5232.	3.4	305
77	Lack of Phenotypic and Functional Impairment in Dendritic Cells from Chimpanzees Chronically Infected with Hepatitis C Virus. Journal of Virology, 2004, 78, 6151-6161.	3.4	64
78	DC-virus interplay: a double edged sword. Seminars in Immunology, 2004, 16, 147-161.	5.6	50
79	Dead-cell-associated proteins are an important source of antigens for cross-presentation by dendritic cells. Nature Reviews Immunology, 2004, 4, 656-656.	22.7	0
80	The role of dendritic cells in the pathogenesis of HIV-1 infection. Apmis, 2003, 111, 776-788.	2.0	28
81	Activation of influenza virus–specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood, 2003, 101, 3520-3526.	1.4	311
82	Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells. Blood, 2003, 102, 4448-4455.	1.4	111
83	Dendritic Cell Amplification of HIV Type 1-Specific CD8+T Cell Responses in Exposed, Seronegative Heterosexual Women. AIDS Research and Human Retroviruses, 2002, 18, 805-815.	1.1	20
84	Amplification of low-frequency antiviral CD8 T cell responses using autologous dendritic cells. Aids, 2002, 16, 171-180.	2.2	39
85	Residual Viral Replication during Antiretroviral Therapy Boosts Human Immunodeficiency Virus Type 1-Specific CD8 + T-Cell Responses in Subjects Treated Early after Infection. Journal of Virology, 2002, 76, 411-415.	3.4	25
86	Activation of HIV-1 specific CD4 and CD8 T cells by human dendritic cells: roles for cross-presentation and non-infectious HIV-1 virus. Aids, 2002, 16, 1319-1329.	2.2	102
87	A clinical grade cocktail of cytokines and PGE2 results in uniform maturation of human monocyte-derived dendritic cells: implications for immunotherapy. Vaccine, 2002, 20, A8-A22.	3.8	175
88	Interactions between dead cells and dendritic cells in the induction of antiviral CTL responses. Current Opinion in Immunology, 2002, 14, 471-477.	5.5	56
89	Dendritic cells resurrect antigens from dead cells. Trends in Immunology, 2001, 22, 141-148.	6.8	180

90 Interactions of viruses with dendritic cells. , 2001, , 505-522.

#	Article	IF	CITATIONS
91	Dendritic Cell–Dead Cell Interactions: Implications and Relevance for Immunotherapy. Journal of Immunotherapy, 2001, 24, 294-304.	2.4	22
92	Efficiency of cross presentation of vaccinia virus-derived antigens by human dendritic cells. European Journal of Immunology, 2001, 31, 3432-3442.	2.9	92
93	Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells. Journal of Immunological Methods, 2001, 258, 111-126.	1.4	89
94	Mature Dendritic Cells Infected with Canarypox Virus Elicit Strong Anti-Human Immunodeficiency Virus CD8+and CD4+ T-Cell Responses from Chronically Infected Individuals. Journal of Virology, 2001, 75, 2142-2153.	3.4	76
95	Primary Tumor Tissue Lysates Are Enriched in Heat Shock Proteins and Induce the Maturation of Human Dendritic Cells. Journal of Immunology, 2001, 167, 4844-4852.	0.8	224
96	EBNA1-specific CD4+ T cells in healthy carriers of Epstein-Barr virus are primarily Th1 in function. Journal of Clinical Investigation, 2001, 107, 121-130.	8.2	109
97	Requirement of Mature Dendritic Cells for Efficient Activation of Influenza A-Specific Memory CD8+ T Cells. Journal of Immunology, 2000, 165, 1182-1190.	0.8	123
98	Strong Human Immunodeficiency Virus (HIV)–Specific CD4+T Cell Responses in a Cohort of Chronically Infected Patients Are Associated with Interruptions in Antiâ€HIV Chemotherapy. Journal of Infectious Diseases, 2000, 181, 1264-1272.	4.0	75
99	Consequences of Cell Death. Journal of Experimental Medicine, 2000, 191, 423-434.	8.5	1,334
100	Changes in Frequency of HIVâ€l–Specific Cytotoxic T Cell Precursors and Circulating Effectors after Combination Antiretroviral Therapy in Children. Journal of Infectious Diseases, 1999, 180, 359-368.	4.0	55
101	Dendritic cells generated from blood monocytes of HIV-1 patients are not infected and act as competent antigen presenting cells eliciting potent T-cell responses. Immunology Letters, 1999, 66, 121-128.	2.5	61
102	Characterization of a molten globule state of bovine carbonic anhydrase III: loss of asymmetrical environment of the aromatic residues has a profound effect on both the near- and far-UV CD spectrum. BBA - Proteins and Proteomics, 1999, 1430, 111-118.	2.1	34
103	Presentation of Epstein-Barr virus latency antigens to CD8+, interferon-Î ³ -secreting, T lymphocytes. European Journal of Immunology, 1999, 29, 3995-4001.	2.9	42
104	A recombinant vaccinia virus based ELISPOT assay detects high frequencies of Pol-specific CD8 T cells in HIV-1-positive individuals. Aids, 1999, 13, 767-777.	2.2	206
105	Mobilization of annexin V during the uptake of DNPâ€albumin by human dendritic cells. Apmis, 1995, 103, 855-861.	2.0	10
106	Annexin Expression in Human Dendritic Cells. Advances in Experimental Medicine and Biology, 1995, 378, 191-193.	1.6	1
107	Endocytosis of Potential Contact Sensitizers by Human Dendritic Cells. Advances in Experimental Medicine and Biology, 1993, 329, 593-597.	1.6	0
108	Rapid ion-exchange chromatography for preparative separation of proteins IV. Application to bovine carbonic anhydrase III from skeletal muscle. Journal of Chromatography A, 1991, 588, 139-145.	3.7	3

#	Article	IF	CITATIONS
109	Factors Associated With the Decay of Anti-SARS-CoV-2 S1 IgG Antibodies Among Recipients of an Adenoviral Vector-Based AZD1222 and a Whole-Virion Inactivated BBV152 Vaccine. Frontiers in Medicine, 0, 9, .	2.6	6