David E Archer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4561311/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The ultimate cost of carbon. Climatic Change, 2020, 162, 2069-2086.	1.7	7
2	Winter Triticale: A Long-Term Cropping Systems Experiment in a Dry Mediterranean Climate. Agronomy, 2020, 10, 1777.	1.3	4
3	Effects of oceanographic changes on controlling the stability of gas hydrates and the formation of authigenic carbonates at mud volcanoes and seepage sites on the Iberian margin of the Gulf of Cadiz. Marine Geology, 2019, 412, 69-80.	0.9	7
4	A model of mercury cycling and isotopic fractionation in the ocean. Biogeosciences, 2018, 15, 6297-6313.	1.3	17
5	Modeling climatic effects of carbon dioxide emissions from Deccan Traps volcanic eruptions around the Cretaceous–Paleogene boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478, 139-148.	1.0	29
6	A stochastic, Lagrangian model of sinking biogenic aggregates in the ocean (SLAMS 1.0): model formulation, validation and sensitivity. Geoscientific Model Development, 2016, 9, 1455-1476.	1.3	35
7	Near miss: the importance of the natural atmospheric CO2 concentration to human historical evolution. Climatic Change, 2016, 138, 1-11.	1.7	8
8	Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Climate Change, 2016, 6, 360-369.	8.1	442
9	Modeling the impediment of methane ebullition bubbles by seasonal lake ice. Biogeosciences, 2014, 11, 6791-6811.	1.3	63
10	The State of Climate Negotiations: a personal scientific commentary. Carbon Balance and Management, 2013, 8, 5.	1.4	0
11	Glacial CO ₂ cycle as a succession of key physical and biogeochemical processes. Climate of the Past, 2012, 8, 251-264.	1.3	92
12	Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific. PLoS ONE, 2011, 6, e25766.	1.1	21
13	How it went down last time. Nature Geoscience, 2010, 3, 819-820.	5.4	5
14	Holocene carbon cycle dynamics. Geophysical Research Letters, 2010, 37, .	1.5	67
15	The role of ocean transport in the uptake of anthropogenic CO ₂ . Biogeosciences, 2009, 6, 375-390.	1.3	93
16	Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20596-20601.	3.3	313
17	Gas hydrates: entrance to a methane age or climate threat?. Environmental Research Letters, 2009, 4, 034007.	2.2	73
18	Lifetime of Anthropogenic Climate Change: Millennial Time Scales of Potential CO2 and Surface Temperature Perturbations. Journal of Climate, 2009, 22, 2501-2511.	1.2	292

#	Article	IF	CITATIONS
19	Geoengineering climate by stratospheric sulfur injections: Earth system vulnerability to technological failure. Climatic Change, 2009, 92, 243-259.	1.7	99
20	Too much of a bad thing. Nature, 2009, 458, 1117-1118.	13.7	18
21	Atmospheric Lifetime of Fossil Fuel Carbon Dioxide. Annual Review of Earth and Planetary Sciences, 2009, 37, 117-134.	4.6	627
22	Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition. Science, 2009, 324, 1551-1554.	6.0	411
23	The millennial atmospheric lifetime of anthropogenic CO2. Climatic Change, 2008, 90, 283-297.	1.7	244
24	Checking the thermostat. Nature Geoscience, 2008, 1, 289-290.	5.4	8
25	Comment on "Modernâ€age buildup of CO ₂ and its effects on seawater acidity and salinity― by Hugo A. Loáiciga. Geophysical Research Letters, 2007, 34, .	1.5	36
26	Coccolithophore productivity response to greenhouse event of the Paleocene–Eocene Thermal Maximum. Earth and Planetary Science Letters, 2007, 258, 192-206.	1.8	62
27	Lowering of glacial atmospheric CO ₂ in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography, 2007, 22, .	3.0	180
28	Long term fate of anthropogenic carbon. Geophysical Research Letters, 2007, 34, .	1.5	97
29	Methane hydrate stability and anthropogenic climate change. Biogeosciences, 2007, 4, 521-544.	1.3	236
30	Subsurface ocean argon disequilibrium reveals the equatorial Pacific shadow zone. Geophysical Research Letters, 2006, 33, n/a-n/a.	1.5	10
31	The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews, 2006, 25, 3150-3184.	1.4	827
32	Globally increased pelagic carbonate production during the Mid-Brunhes dissolution interval and the CO2 paradox of MIS 11. Quaternary Science Reviews, 2006, 25, 3278-3293.	1.4	87
33	Argon as a Tracer of Cross-Isopycnal Mixing in the Thermocline. Journal of Physical Oceanography, 2006, 36, 2090-2105.	0.7	16
34	ATMOSPHERE: An Ancient Carbon Mystery. Science, 2006, 314, 1556-1557.	6.0	162
35	Role of deep sea temperature in the carbon cycle during the last glacial. Paleoceanography, 2005, 20, n/a-n/a.	3.0	35
36	Time-dependent response of the global ocean clathrate reservoir to climatic and anthropogenic forcing. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	1.0	78

#	Article	IF	CITATIONS
37	A movable trigger: Fossil fuel CO2and the onset of the next glaciation. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	1.0	77
38	Fate of fossil fuel CO2in geologic time. Journal of Geophysical Research, 2005, 110, .	3.3	446
39	A nonlinear convolution model for the evasion of CO2injected into the deep ocean. Journal of Geophysical Research, 2004, 109, .	3.3	17
40	The importance of ocean temperature to global biogeochemistry. Earth and Planetary Science Letters, 2004, 222, 333-348.	1.8	74
41	Global inventory of methane clathrate: sensitivity to changes in the deep ocean. Earth and Planetary Science Letters, 2004, 227, 185-199.	1.8	377
42	Model sensitivity in the effect of Antarctic sea ice and stratification on atmospheric pCO2. Paleoceanography, 2003, 18, n/a-n/a.	3.0	56
43	OCEAN SCIENCE: Enhanced: Who Threw That Snowball?. Science, 2003, 302, 791-792.	6.0	2
44	Modeling the response of the oceanic Si inventory to perturbation, and consequences for atmospheric CO2. Global Biogeochemical Cycles, 2002, 16, 19-1-19-25.	1.9	50
45	Influence of bacterial uptake on deep-ocean dissolved organic carbon. Global Biogeochemical Cycles, 2002, 16, 74-1-74-12.	1.9	45
46	Organic carbon flux and organic carbon to calcite flux ratio recorded in deep-sea carbonates: Demonstration and a new proxy. Global Biogeochemical Cycles, 2002, 16, 25-1-25-15.	1.9	62
47	Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio. Global Biogeochemical Cycles, 2002, 16, 63-1-63-14.	1.9	658
48	Glacial–interglacial stability of ocean pH inferred from foraminifer dissolution rates. Nature, 2002, 416, 70-73.	13.7	92
49	AtmosphericpCO2sensitivity to the biological pump in the ocean. Global Biogeochemical Cycles, 2000, 14, 1219-1230.	1.9	113
50	A model of the iron cycle in the ocean. Global Biogeochemical Cycles, 2000, 14, 269-279.	1.9	193
51	Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean. Journal of Geophysical Research, 2000, 105, 1209-1225.	3.3	176
52	What caused the glacial/interglacial atmosphericpCO2cycles?. Reviews of Geophysics, 2000, 38, 159-189.	9.0	404
53	Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs. Science, 1999, 284, 118-120.	6.0	1,170
54	A global oceanic sediment model for long-term climate studies. Global Biogeochemical Cycles, 1999, 13, 221-250.	1.9	153

#	Article	IF	CITATIONS
55	How strong is the Harvardton-Bear Constraint?. Global Biogeochemical Cycles, 1999, 13, 817-820.	1.9	61
56	Sensitivity of paleonutrient tracer distributions and deep-sea circulation to glacial boundary conditions. Paleoceanography, 1999, 14, 304-323.	3.0	58
57	Modeling the evasion of CO2 injected into the deep ocean. , 1999, , 287-292.		1
58	Modeling a Limited Region of the Ocean. Journal of Computational Physics, 1998, 145, 555-574.	1.9	10
59	Dynamics of fossil fuel CO2neutralization by marine CaCO3. Global Biogeochemical Cycles, 1998, 12, 259-276.	1.9	228
60	Global deep-sea burial rate of calcium carbonate during the Last Glacial Maximum. Paleoceanography, 1998, 13, 298-310.	3.0	90
61	Seasonal variations in the atmospheric O2/N2ratio in relation to the kinetics of air-sea gas exchange. Global Biogeochemical Cycles, 1998, 12, 141-163.	1.9	116
62	A timescale for dissolved organic carbon production in equatorial Pacific surface waters. Global Biogeochemical Cycles, 1997, 11, 435-452.	1.9	49
63	Multiple timescales for neutralization of fossil fuel CO2. Geophysical Research Letters, 1997, 24, 405-408.	1.5	240
64	A meeting place of great ocean currents: shipboard observations of a convergent front at 2°N in the Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 1827-1849.	0.6	42
65	Variability of CO2 distributions and sea-air fluxes in the central and eastern equatorial Pacific during the 199–1994 El Nin˜o. Deep-Sea Research Part II: Topical Studies in Oceanography, 1997, 44, 1851-1867.	0.6	64
66	An atlas of the distribution of calcium carbonate in sediments of the deep sea. Global Biogeochemical Cycles, 1996, 10, 159-174.	1.9	187
67	Daily, seasonal and interannual variability of sea-surface carbon and nutrient concentration in the equatorial Pacific Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 1996, 43, 779-808.	0.6	45
68	A data-driven model of the global calcite lysocline. Global Biogeochemical Cycles, 1996, 10, 511-526.	1.9	195
69	Upper Ocean Physics as Relevant to Ecosystem Dynamics: A Tutorial. , 1995, 5, 724-739.		33
70	Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature, 1994, 367, 260-263.	13.7	515
71	Respiration and dissolution in the sediments of the western North Atlantic: estimates from models of in situ microelectrode measurements of porewater oxygen and pH. Deep-Sea Research Part I: Oceanographic Research Papers, 1994, 41, 695-719.	0.6	105
72	Numerical hindcasting of sea surface pCO2 at Weathership Station Papa. Progress in Oceanography, 1993, 32, 319-351.	1.5	33

#	Article	IF	CITATIONS
73	Benthic oxygen fluxes on the Washington shelf and slope: A comparison of in situ microelectrode and chamber flux measurements. Limnology and Oceanography, 1992, 37, 614-629.	1.6	200
74	Glacial carbonate dissolution cycles and atmospheric pCO ₂ : A view from the ocean bottom. Paleoceanography, 1992, 7, 319-331.	3.0	32
75	Modeling the calcite lysocline. Journal of Geophysical Research, 1991, 96, 17037-17050.	3.3	165
76	Equatorial Pacific Calcite Preservation Cycles: Production or Dissolution?. Paleoceanography, 1991, 6, 561-571.	3.0	93
77	Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes. Nature, 1989, 340, 623-626.	13.7	100
78	Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results. Geochimica Et Cosmochimica Acta, 1989, 53, 2831-2845.	1.6	223
79	Benthic recycling of biogenic debris in the eastern tropical Atlantic Ocean. Geochimica Et Cosmochimica Acta, 1989, 53, 2947-2960.	1.6	85