
Yuri Dahnovsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4561164/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Threshold behaviors of direct and Hall currents in topological spin-Hall effect. Journal of Magnetism and Magnetic Materials, 2022, 541, 168492.	1.0	1
2	Giant resonances in topological spin Hall effect due to electron-skyrmion scattering in two-dimensional Rashba spin-orbit ferromagnets. Physical Review B, 2022, 105, .	1.1	3
3	Spin-dependent Seebeck and Nernst effects in an ideal skyrmion gas. Journal of Magnetism and Magnetic Materials, 2021, 518, 167367.	1.0	4
4	Small energy gap revealed in CrBr3 by scanning tunneling spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 3225-3232.	1.3	5
5	"Magic―Orientation Angles to Suppress Spin-Driven Hall Currents in Anisotropic 2D Materials with an Ideal Skyrmion Gas. Journal of Physical Chemistry C, 2021, 125, 11035-11042.	1.5	3
6	Temperature effects in spin-dependent Hall currents in an ideal skyrmion gas. Physical Review B, 2021, 103, .	1.1	3
7	Spin filtering and spin separation in 2D materials by topological spin Hall effect. Journal of Physics Condensed Matter, 2020, 32, 405803.	0.7	5
8	High-temperature 2D ferromagnetism in conjugated microporous porphyrin-type polymers. Physical Chemistry Chemical Physics, 2020, 22, 14480-14488.	1.3	1
9	Large electronic wave function extension of the oxygen vacancies on EuO1â^'x surface. Materials Research Express, 2019, 6, 116408.	0.8	1
10	Physical Properties of Conjugated Nanopore Materials. ACS Symposium Series, 2019, , 293-308.	0.5	0
11	Ferromagnetism in 2D organic iron hemoglobin crystals based on nitrogenated conjugated micropore materials. Physical Chemistry Chemical Physics, 2019, 21, 25820-25825.	1.3	4
12	Room temperature d0 ferromagnetism in PbS films: nonuniform distribution of Pb vacancies. Physical Chemistry Chemical Physics, 2018, 20, 29804-29810.	1.3	4
13	Molecular tunneling in large tubes of 3D nitrogenated micropore materials. Journal of Applied Physics, 2018, 124, 194303.	1.1	22
14	The effect of spatial distribution of Zn vacancies in ZnS quantum dots on optical absorption spectra. Solid State Communications, 2017, 257, 47-49.	0.9	5
15	Tunable bandgap in halogen doped 2D nitrogenated microporous materials. Journal of Applied Physics, 2017, 122, .	1.1	25
16	Zn vacancy ferromagnetism in ZnS nanocrystals. Journal of Magnetism and Magnetic Materials, 2017, 443, 9-12.	1.0	1
17	Dramatic Drop of <i>d</i> ⁰ Ferromagnetism with ZnO Nanocrystal Size in Vacuum and Air. Journal of Physical Chemistry C, 2017, 121, 19401-19406.	1.5	7
18	Effects of Mn dopant locations on the electronic bandgap of PbS quantum dots. Applied Physics Letters. 2017. 111	1.5	8

Yuri Dahnovsky

#	Article	IF	CITATIONS
19	Room temperature d0 ferromagnetism in ZnS nanocrystals. Journal of Applied Physics, 2016, 119, 223901.	1.1	18
20	Giant photocurrent enhancement by transition metal doping in quantum dot sensitized solar cells. Applied Physics Letters, 2016, 109, 103901.	1.5	16
21	Surface-Bulk Model for d ⁰ Ferromagnetism in ZnS Quantum Dots and Wires. Journal of Physical Chemistry C, 2016, 120, 11253-11261.	1.5	14
22	Coexistence of Two Electronic Nano-Phases on a CH ₃ NH ₃ Pbl _{3–<i>x</i>} Cl _{<i>x</i>} Surface Observed in STM Measurements. ACS Applied Materials & Interfaces, 2016, 8, 29110-29116.	4.0	21
23	Large enhancement in photocurrent by Mn doping in CdSe/ZTO quantum dot sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 26771-26776.	1.3	14
24	Magnetic effects in Mn-doped CdSe nanocrystals. Physica Status Solidi (B): Basic Research, 2015, 252, 2275-2279.	0.7	11
25	Transition Metal-Doped Semiconductor Quantum Dots: Tunable Emission. ACS Symposium Series, 2015, , 117-135.	0.5	2
26	Optical and Magnetic Properties of PbS Nanocrystals Doped by Manganese Impurities. Journal of Physical Chemistry C, 2015, 119, 16941-16946.	1.5	27
27	Optical spectra of CdMnSe of nano-ferro- and antiferro-magnets. Physical Chemistry Chemical Physics, 2015, 17, 26828-26832.	1.3	13
28	Long-lived emission in Mn doped CdS, ZnS, and ZnSe diluted magnetic semiconductor quantum dots. Chemical Physics, 2015, 461, 58-62.	0.9	19
29	Tunable Luminescence in CdSe Quantum Dots Doped by Mn Impurities. Journal of Physical Chemistry C, 2014, 118, 28314-28321.	1.5	27
30	Spectroscopic and electronic structure properties of CdSe nanocrystals: spheres and cubes. Physical Chemistry Chemical Physics, 2014, 16, 7555.	1.3	12
31	Size-dependent density of states and optical spectra of CdSe quantum rods and tubes. Chemical Physics Letters, 2014, 595-596, 250-255.	1.2	5
32	Correlated electron dynamics in quantum-dot sensitized solar cell: Kadanoff-Baym versus Markovian approach. Physical Review B, 2012, 85, .	1.1	9
33	Quantum correlated electron dynamics in a quantum-dot sensitized solar cell: Keldysh function approach. Physical Review B, 2011, 83, .	1.1	10
34	<i>Ab initio</i> electron propagators in molecules with strong electron-phonon interaction: II. Electron Green's function. Journal of Chemical Physics, 2007, 127, 014104.	1.2	11
35	Ab initioelectron propagators in molecules with strong electron-phonon interaction. I. Phonon averages. Journal of Chemical Physics, 2007, 126, 234111.	1.2	10
36	Surface Green functions in molecular transport junctions: Generalization to interacting electrons in the leads. Physical Review B, 2007, 76, .	1.1	9

Yuri Dahnovsky

#	Article	IF	CITATIONS
37	Electron tunneling dynamics in anharmonic bath. Journal of Chemical Physics, 2005, 122, 044501.	1.2	4
38	Vibrational coherence in electron transfer: an exactly solvable model. Chemical Physics, 2004, 296, 171-180.	0.9	9
39	Calculating electron transport in a tight binding model of a field-driven molecular wire: Floquet theory approach. Journal of Chemical Physics, 2002, 116, 10909-10920.	1.2	47
40	Calculating electron current in a tight-binding model of a field-driven molecular wire: Application to xylyl-dithiol. Journal of Chemical Physics, 2002, 117, 567-580.	1.2	54