
Luisa Lanfrancone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4561114/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of LncRNAs in Melanoma and Their Functional Roles in the Metastatic Process. Cells, 2022, 11, 577.	4.1	13
2	Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nature Genetics, 2021, 53, 86-99.	21.4	118
3	Long nonâ€coding RNA TINCR suppresses metastatic melanoma dissemination by preventing ATF4 translation. EMBO Reports, 2021, 22, e50852.	4.5	21
4	ShcD Binds DOCK4, Promotes Ameboid Motility and Metastasis Dissemination, Predicting Poor Prognosis in Melanoma. Cancers, 2020, 12, 3366.	3.7	6
5	Development of Personalized Therapeutic Strategies by Targeting Actionable Vulnerabilities in Metastatic and Chemotherapy-Resistant Breast Cancer PDXs. Cells, 2019, 8, 605.	4.1	12
6	Combination of Hypoglycemia and Metformin Impairs Tumor Metabolic Plasticity and Growth by Modulating the PP2A-GSK3Î ² -MCL-1 Axis. Cancer Cell, 2019, 35, 798-815.e5.	16.8	212
7	The chromodomain helicase CHD4 regulates ERBB2 signaling pathway and autophagy in ERBB2+ breast cancer cells. Biology Open, 2019, 8, .	1.2	16
8	Modeling cell proliferation in human acute myeloid leukemia xenografts. Bioinformatics, 2019, 35, 3378-3386.	4.1	8
9	WDR5 inhibition halts metastasis dissemination by repressing the mesenchymal phenotype of breast cancer cells. Breast Cancer Research, 2019, 21, 123.	5.0	31
10	p53 Loss in Breast Cancer Leads to Myc Activation, Increased Cell Plasticity, and Expression of a Mitotic Signature with Prognostic Value. Cell Reports, 2019, 26, 624-638.e8.	6.4	47
11	The ACC melanoma pilot project: "Real-world―evaluation of an NGS platform for molecular characterization of melanoma in Italy Journal of Clinical Oncology, 2019, 37, e14600-e14600.	1.6	0
12	Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nature Reviews Cancer, 2017, 17, 254-268.	28.4	527
13	Transcriptional activation of RagD GTPase controls mTORC1 and promotes cancer growth. Science, 2017, 356, 1188-1192.	12.6	165
14	<i>In Vivo</i> Genetic Screens of Patient-Derived Tumors Revealed Unexpected Frailty of the Transformed Phenotype. Cancer Discovery, 2016, 6, 650-663.	9.4	59
15	InÂVivo Functional Platform Targeting Patient-Derived Xenografts Identifies WDR5-Myc Association as a Critical Determinant of Pancreatic Cancer. Cell Reports, 2016, 16, 133-147.	6.4	114
16	Dual modulation of MCL-1 and mTOR determines the response to sunitinib. Journal of Clinical Investigation, 2016, 127, 153-168.	8.2	49
17	RNAi screens identify CHD4 as an essential gene in breast cancer growth. Oncotarget, 2016, 7, 80901-80915.	1.8	37
18	Abstract 1701: Identification of epigenetic modifiers able to suppress growth of pancreatic ductal		0

adenocarcinoma: A patient-orientedin vivofunctional platform. , 2015, , .

LUISA LANFRANCONE

#	Article	IF	CITATIONS
19	Beclin 1 restrains tumorigenesis through Mcl-1 destabilization in an autophagy-independent reciprocal manner. Nature Communications, 2014, 5, 5637.	12.8	65
20	Investigating the metastatic niche in melanoma: a new therapeutic opportunity?. Future Oncology, 2014, 10, 699-701.	2.4	3
21	Molecular networks in melanoma invasion and metastasis. Future Oncology, 2013, 9, 713-726.	2.4	41
22	Cellular Heterogeneity During Embryonic Stem Cell Differentiation to Epiblast Stem Cells Is Revealed by the ShcD/RaLP Adaptor Protein. Stem Cells, 2012, 30, 2423-2436.	3.2	21
23	Transcriptional analysis of the Aurora inhibitor Danusertib leading to biomarker identification in TP53 wild type cells. Gene, 2012, 494, 202-208.	2.2	4
24	Pirin Inhibits Cellular Senescence in Melanocytic Cells. American Journal of Pathology, 2011, 178, 2397-2406.	3.8	31
25	Pirin delocalization in melanoma progression identified by high content immuno-detection based approaches. BMC Cell Biology, 2010, 11, 5.	3.0	23
26	Melanoma: targeting signaling pathways and RaLP. Expert Opinion on Therapeutic Targets, 2009, 13, 93-104.	3.4	8
27	Expression of H-RASV12 in a zebrafish model of Costello syndrome causes cellular senescence in adult proliferating cells. DMM Disease Models and Mechanisms, 2009, 2, 56-67.	2.4	77
28	14-P011 Expression of H-RASV12 in a zebrafish model of Costello syndrome causes cellular senescence in adult proliferating cells. Mechanisms of Development, 2009, 126, S242.	1.7	0
29	Tbx3 Represses E-Cadherin Expression and Enhances Melanoma Invasiveness. Cancer Research, 2008, 68, 7872-7881.	0.9	130
30	The proapoptotic and antimitogenic protein p66SHC acts as a negative regulator of lymphocyte activation and autoimmunity. Blood, 2008, 111, 5017-5027.	1.4	36
31	RaLP, a New Member of the Src Homology and Collagen Family, Regulates Cell Migration and Tumor Growth of Metastatic Melanomas. Cancer Research, 2007, 67, 3064-3073.	0.9	69
32	p52Shc is required for CXCR4-dependent signaling and chemotaxis in T cells. Blood, 2007, 110, 1730-1738.	1.4	55
33	Cooperation and selectivity of the two Grb2 binding sites of p52Shc in T-cell antigen receptor signaling to Ras family GTPases and Myc-dependent survival. Oncogene, 2005, 24, 2218-2228.	5.9	29
34	Genetic Deletion of the p66 Shc Adaptor Protein Protects From Angiotensin II–Induced Myocardial Damage. Hypertension, 2005, 46, 433-440.	2.7	101
35	Adaptor ShcA Protein Binds Tyrosine Kinase Tie2 Receptor and Regulates Migration and Sprouting but Not Survival of Endothelial Cells. Journal of Biological Chemistry, 2004, 279, 13224-13233.	3.4	44
36	p66SHC Promotes Apoptosis and Antagonizes Mitogenic Signaling in T Cells. Molecular and Cellular Biology, 2004, 24, 1747-1757.	2.3	124

#	Article	IF	CITATIONS
37	The Life Span Determinant p66Shc Localizes to Mitochondria Where It Associates with Mitochondrial Heat Shock Protein 70 and Regulates Trans-membrane Potential. Journal of Biological Chemistry, 2004, 279, 25689-25695.	3.4	260
38	Vascular Endothelial Growth Factor Induces Shc Association With Vascular Endothelial Cadherin. Arteriosclerosis, Thrombosis, and Vascular Biology, 2002, 22, 617-622.	2.4	69
39	A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene, 2002, 21, 3872-3878.	5.9	410
40	Precision Photometer Heads as Primary Transducers in Devices Used to Measure Luminous Quantities. Measurement Techniques, 2002, 45, 164-167.	0.6	0
41	The adaptor protein shc is involved in the negative regulation of NK cell-mediated cytotoxicity. European Journal of Immunology, 2001, 31, 2016-2025.	2.9	28
42	Salicylates Inhibit T Cell Adhesion on Endothelium Under Nonstatic Conditions: Induction of L-Selectin Shedding by a Tyrosine Kinase-Dependent Mechanism. Journal of Immunology, 2001, 166, 832-840.	0.8	18
43	Constitutive activation of the Ras/MAP kinase pathway and enhanced TCR signaling by targeting the Shc adaptor to membrane rafts. Oncogene, 2000, 19, 1529-1537.	5.9	48
44	Human endothelial cells expressing polyoma middle T induce tumors. Oncogene, 2000, 19, 3632-3641.	5.9	24
45	The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 1999, 402, 309-313.	27.8	1,619
46	Retroviral gene transfer, rapid selection, and maintenance of the immature phenotype in mouse dendritic cells. Journal of Leukocyte Biology, 1999, 66, 263-267.	3.3	17
47	Bombesin-Induced Pancreatic Regeneration in Pigs Is Mediated by p46Shc/p52Shcand p42/p44 Mitogen-Activated Protein Kinase Upregulation. Scandinavian Journal of Gastroenterology, 1998, 33, 1310-1320.	1.5	17
48	Tyrosine 474 of ZAP-70 Is Required for Association with the Shc Adaptor and for T-cell Antigen Receptor-dependent Gene Activation. Journal of Biological Chemistry, 1998, 273, 20487-20493.	3.4	35
49	Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides 1 1Edited by J. Karn. Journal of Molecular Biology, 1997, 269, 694-703.	4.2	74
50	The RIα subunit of protein kinase A (PKA) binds to Grb2 and allows PKA interaction with the activated EGF-Receptor. Oncogene, 1997, 14, 923-928.	5.9	94
51	Opposite effects of the p52shc/p46shc and p66shc splicing isoforms on the EGF receptor-MAP kinase-fos signalling pathway. EMBO Journal, 1997, 16, 706-716.	7.8	373
52	Epidermal growth factor modulates pepsinogen secretion in guinea pig gastric chief cells. Gastroenterology, 1996, 111, 945-958.	1.3	23
53	An X chromosome-linked gene encoding a protein with characteristics of a rhoGAP predominantly expressed in hematopoietic cells Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 695-699.	7.1	50
54	Shc Proteins Are Localized on Endoplasmic Reticulum Membranes and Are Redistributed after Tyrosine Kinase Receptor Activation. Molecular and Cellular Biology, 1996, 16, 1946-1954.	2.3	69

LUISA LANFRANCONE

#	Article	IF	CITATIONS
55	Not all Shc's roads lead to Ras. Trends in Biochemical Sciences, 1996, 21, 257-261.	7.5	225
56	Human lung carcinoma cells engineered to release IL2, IL7, GM-CSF and TNF alpha. International Journal of Oncology, 1996, 8, 765-72.	3.3	1
57	Not all Shc's roads lead to Ras. Trends in Biochemical Sciences, 1996, 21, 257-261.	7.5	69
58	Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells Journal of Cell Biology, 1994, 127, 537-546.	5.2	490
59	Transformation by polyoma virus middle T-antigen involves the binding and tyrosine phosphorylation of Shc. Nature, 1994, 367, 87-90.	27.8	213
60	Chromosome Locations of Genes Encoding Human Signal Transduction Adapter Proteins, Nck (NCK), Shc (SHC1), and Grb2 (GRB2). Genomics, 1994, 22, 281-287.	2.9	26
61	Cancer genetics. Current Opinion in Genetics and Development, 1994, 4, 109-119.	3.3	12
62	Chromosomal localization of four human zinc finger cDNAs. Human Genetics, 1993, 91, 217-222.	3.8	10
63	Expression of adhesion molecules and chemotactic cytokines in cultured human mesothelial cells Journal of Experimental Medicine, 1992, 176, 1165-1174.	8.5	284
64	Structural and functional organization of the HF.10 human zinc finger gene (ZNF35) located on chromosome 3p21–p22. Genomics, 1992, 12, 720-728.	2.9	20
65	A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell, 1992, 70, 93-104.	28.9	1,348
66	Loss of amplification and appearance of a novel translocation site of the c-myc oncogene in HL-60 leukemia cells. Cancer Genetics and Cytogenetics, 1991, 56, 57-64.	1.0	6
67	Identification and characterization of novel human endogenous retroviral sequences prefentially expressed in undifferentiated embryonal carcinoma cells. Nucleic Acids Research, 1991, 19, 1513-1520.	14.5	99
68	Activation of cord T lymphocytes. Cellular Immunology, 1990, 127, 247-259.	3.0	54
69	Establishment from an adult leukemic patient of two novel precursor B cell lines with different growth modality. Leukemia Research, 1990, 14, 177-184.	0.8	5
70	Localization of the human HF.10 finger gene on a chromosome region (3p21?22) frequently deleted in human cancers. Human Genetics, 1990, 84, 391-5.	3.8	12
71	cDNA isolation, expression analysis, and chromosomal localization of two human zinc finger genes. Genomics, 1990, 6, 333-340.	2.9	47
72	Inhibitory effect of the somatostatin analog octreotide on rat pituitary tumor cell (GH3) proliferation in vitro. Journal of Endocrinological Investigation, 1990, 13, 657-662.	3.3	22

LUISA LANFRANCONE

#	Article	IF	CITATIONS
73	Basis for defective proliferation of peripheral blood T cells to anti-CD2 antibodies in primary Sjögren's syndrome Journal of Clinical Investigation, 1990, 86, 1870-1877.	8.2	21
74	Hematopoietic Growth Factors Expression in Normal Human Phagocytic Cells. International Journal of Immunopathology and Pharmacology, 1989, 2, 55-61.	2.1	0
75	Evolutionary conservation in various mammalian species of the human proliferation-associated epitope recognized by the Ki-67 monoclonal antibody Journal of Histochemistry and Cytochemistry, 1989, 37, 1471-1478.	2.5	57
76	Expression pattern ofc-fes oncogene mRNA in human myeloid cells. International Journal of Cancer, 1989, 44, 35-38.	5.1	38
77	127 Localization of the human P10 finger gene on a chromosomal region (3p21) deleted in human lung cancers. Cancer Genetics and Cytogenetics, 1989, 38, 202.	1.0	0
78	Isolation of cDNAs encoding finger proteins and measurement of the corresponding mRNA levels during myeloid terminal differentiation. Nucleic Acids Research, 1988, 16, 4227-4237.	14.5	39
79	Mechanism of Activation and Biological Role of the c-myc Oncogene in B-cell Lymphomagenesis. Annals of the New York Academy of Sciences, 1987, 511, 207-218.	3.8	20
80	Human leukemia cells synthesize and secrete proteins related to platelet-derived growth factor Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5526-5530.	7.1	12
81	Structure and Expression of Translocated c-myc Oncogenes: Specific Differences in Endemic, Sporadic and AIDS-Associated Forms of Burkitt Lymphomas. Current Topics in Microbiology and Immunology, 1986, 132, 257-265.	1.1	10
82	Release of hemopoietic factors by normal human T cell lines with either suppressor or helper activity. Journal of Cellular Physiology, 1985, 122, 7-13.	4.1	10
83	Oncogene mobility in a human leukemia line HL-60. Cancer Genetics and Cytogenetics, 1985, 17, 133-141.	1.0	26
84	Amplification of the c-myb oncogene in a case of human acute myelogenous leukemia. Science, 1984, 224, 1117-1121.	12.6	153
85	Functional and phenotypic characterization of two HL60 clones resistant to dimethylsulfoxide. Experimental Cell Research, 1983, 147, 111-118.	2.6	5
86	In Vivo Requirements for the Immune Recognition of L1210 Leukemia Cells by Allogeneic T-Lymphocytes. Tumori, 1983, 69, 403-408.	1.1	0
87	Suppressor macrophages in tumor-bearing mice. Inconsistency betweenin vivo andin vitro findings?. International Journal of Cancer, 1982, 29, 695-698.	5.1	10