
## Thalia Papayannopoulou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4561004/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                          | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A comparative encyclopedia of DNA elements in the mouse genome. Nature, 2014, 515, 355-364.                                                                                                                      | 13.7 | 1,444     |
| 2  | Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature, 1990, 344, 309-313.                                                                                           | 13.7 | 354       |
| 3  | Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science, 2014, 346, 1007-1012.                                                                                             | 6.0  | 244       |
| 4  | Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood, 2004, 103, 1580-1585.                                                                                                   | 0.6  | 210       |
| 5  | Anti–VLA4/VCAM-1—Induced Mobilization Requires Cooperative Signaling Through the kit/mkit Ligand<br>Pathway. Blood, 1998, 91, 2231-2239.                                                                         | 0.6  | 209       |
| 6  | A self-sustained loop of inflammation-driven inhibition of beige adipogenesis in obesity. Nature<br>Immunology, 2017, 18, 654-664.                                                                               | 7.0  | 139       |
| 7  | Human Platelets Display High-Affinity Receptors for Thrombopoietin. Blood, 1997, 89, 1896-1904.                                                                                                                  | 0.6  | 138       |
| 8  | Functional footprinting of regulatory DNA. Nature Methods, 2015, 12, 927-930.                                                                                                                                    | 9.0  | 123       |
| 9  | The role of G-protein signaling in hematopoietic stem/progenitor cell mobilization. Blood, 2003, 101, 4739-4747.                                                                                                 | 0.6  | 107       |
| 10 | Bone marrow homing: the players, the playfield, and their evolving roles. Current Opinion in Hematology, 2003, 10, 214-219.                                                                                      | 1.2  | 87        |
| 11 | Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of<br>Patients with β-Thalassemia Major. Molecular Therapy - Methods and Clinical Development, 2018, 10,<br>313-326. | 1.8  | 83        |
| 12 | In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors. Blood, 2016, 128, 2206-2217.                                                 | 0.6  | 76        |
| 13 | HDAd5/35++ Adenovirus Vector Expressing Anti-CRISPR Peptides Decreases CRISPR/Cas9 Toxicity in<br>Human Hematopoietic Stem Cells. Molecular Therapy - Methods and Clinical Development, 2018, 9,<br>390-401.     | 1.8  | 63        |
| 14 | 2p15-p16.1 microdeletions encompassing and proximal to BCL11A are associated with elevated HbF in addition to neurologic impairment. Blood, 2015, 126, 89-93.                                                    | 0.6  | 62        |
| 15 | Defect in glycosylation of erythrocyte membrane proteins in congenital dyserythropoietic anaemia<br>type II (HEMPAS). British Journal of Haematology, 1984, 56, 55-68.                                           | 1.2  | 60        |
| 16 | Therapeutic targeting and rapid mobilization of endosteal HSC using a small molecule integrin antagonist. Nature Communications, 2016, 7, 11007.                                                                 | 5.8  | 51        |
| 17 | In vivo hematopoietic stem cell gene therapy ameliorates murine thalassemia intermedia. Journal of<br>Clinical Investigation, 2018, 129, 598-615.                                                                | 3.9  | 43        |
| 18 | IL-1α and Complement Cooperate in Triggering Local Neutrophilic Inflammation in Response to Adenovirus and Eliminating Virus-Containing Cells. PLoS Pathogens, 2014, 10, e1004035.                               | 2.1  | 42        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Cytokine Prestimulation as a Gene Therapy Strategy: Implications for Using the MDR1 Gene as a Dominant Selectable Marker. Blood, 1997, 89, 146-154.                                                                                          | 0.6  | 35        |
| 20 | A Combined InÂVivo HSC Transduction/Selection Approach Results in Efficient and Stable Gene<br>Expression in Peripheral Blood Cells in Mice. Molecular Therapy - Methods and Clinical Development,<br>2018, 8, 52-64.                        | 1.8  | 33        |
| 21 | Hematopoietic Stem/Progenitor Cell Mobilization: A Continuing Quest for Etiologic Mechanisms.<br>Annals of the New York Academy of Sciences, 1999, 872, 187-199.                                                                             | 1.8  | 32        |
| 22 | Increase in Circulating SDFâ€1 after Treatment with Sulfated Glycans. Annals of the New York Academy of Sciences, 2001, 938, 48-53.                                                                                                          | 1.8  | 32        |
| 23 | Brief Report: A Differential Transcriptomic Profile of Ex Vivo Expanded Adult Human Hematopoietic<br>Stem Cells Empowers Them for Engraftment Better than Their Surface Phenotype. Stem Cells<br>Translational Medicine, 2017, 6, 1852-1858. | 1.6  | 28        |
| 24 | Integrating HDAd5/35++ Vectors as a New Platform for HSC Gene Therapy of Hemoglobinopathies.<br>Molecular Therapy - Methods and Clinical Development, 2018, 9, 142-152.                                                                      | 1.8  | 28        |
| 25 | Targeted Integration and High-Level Transgene Expression in AAVS1 Transgenic Mice after In Vivo HSC<br>Transduction with HDAd5/35++ Vectors. Molecular Therapy, 2019, 27, 2195-2212.                                                         | 3.7  | 28        |
| 26 | InÂVivo Hematopoietic Stem Cell Transduction. Hematology/Oncology Clinics of North America, 2017,<br>31, 771-785.                                                                                                                            | 0.9  | 26        |
| 27 | Hemopoietic lineage commitment decisions: in vivo evidence from a transgenic mouse model harboring<br>μLCR-βpro-LacZ as a transgene. Blood, 2000, 95, 1274-1282.                                                                             | 0.6  | 24        |
| 28 | The macrophage contribution to stress erythropoiesis: when less is enough. Blood, 2016, 128, 1756-1765.                                                                                                                                      | 0.6  | 24        |
| 29 | Stage-specific functional roles of integrins in murine erythropoiesis. Experimental Hematology, 2014, 42, 404-409.e4.                                                                                                                        | 0.2  | 23        |
| 30 | High-level protein production in erythroid cells derived from in vivo transduced hematopoietic stem cells. Blood Advances, 2019, 3, 2883-2894.                                                                                               | 2.5  | 19        |
| 31 | Safe and efficient inÂvivo hematopoietic stem cell transduction in nonhuman primates using<br>HDAd5/35++ vectors. Molecular Therapy - Methods and Clinical Development, 2022, 24, 127-141.                                                   | 1.8  | 19        |
| 32 | Curative in vivo hematopoietic stem cell gene therapy of murine thalassemia using large regulatory elements. JCI Insight, 2020, 5, .                                                                                                         | 2.3  | 17        |
| 33 | Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo.<br>Blood, 2021, 138, 1540-1553.                                                                                                          | 0.6  | 16        |
| 34 | A haemoglobin switching activity modulates hereditary persistence of fetal haemoglobin. Nature, 1984, 309, 71-73.                                                                                                                            | 13.7 | 13        |
| 35 | Patterns of spectrin transcripts in erythroid and non-erythroid cells. Journal of Cellular Physiology, 1990, 144, 287-294.                                                                                                                   | 2.0  | 12        |
| 36 | GM 58/8: a monoclonal antibody that identifies a new lineage-specific determinant expressed by myeloid<br>progenitors (CFU-GM) and their progeny. British Journal of Haematology, 1984, 58, 147-158.                                         | 1.2  | 11        |

Thalia Papayannopoulou

| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Deletion of Dicer in late erythroid cells results in impaired stress erythropoiesis in mice.<br>Experimental Hematology, 2014, 42, 852-856.e1.                                                                                           | 0.2 | 9         |
| 38 | Reappraising the role of α5 integrin and the microenvironmental support in stress erythropoiesis.<br>Experimental Hematology, 2020, 81, 16-31.e4.                                                                                        | 0.2 | 9         |
| 39 | Single-dose MGTA-145/plerixafor leads to efficient mobilization and in vivo transduction of HSCs with thalassemia correction in mice. Blood Advances, 2021, 5, 1239-1249.                                                                | 2.5 | 9         |
| 40 | Anti–VLA4/VCAM-1—Induced Mobilization Requires Cooperative Signaling Through the kit/mkit Ligand<br>Pathway. Blood, 1998, 91, 2231-2239.                                                                                                 | 0.6 | 9         |
| 41 | Stains for Inclusion Bodies. CRC Critical Reviews in Clinical Laboratory Sciences, 1974, 5, 70-72.                                                                                                                                       | 1.0 | 7         |
| 42 | Anomalous cell surface structure of sickle cell anemia erythrocytes as demonstrated by cell surface<br>labeling and endo-β-galactosidase treatment. Journal of Supramolecular Structure and Cellular<br>Biochemistry, 1981, 17, 289-297. | 1.4 | 5         |
| 43 | Control of fetal globin expression in man: new opportunities to challenge past discoveries.<br>Experimental Hematology, 2020, 92, 43-50.                                                                                                 | 0.2 | 5         |
| 44 | Human hemoglobin switching: Insights from studies of erythroid cultures. Journal of Cellular<br>Physiology, 1982, 113, 145-149.                                                                                                          | 2.0 | 4         |
| 45 | Biologic effects of thrombopoietin, the Mpl ligand, and its therapeutic potential. Cancer<br>Chemotherapy and Pharmacology, 1996, 38, S69-S73.                                                                                           | 1.1 | 4         |
| 46 | Adaptive Immunity and Pathogenesis of Diabetes: Insights Provided by the α4–Integrin Deficient NOD<br>Mouse. Cells, 2020, 9, 2597.                                                                                                       | 1.8 | 4         |
| 47 | Investigating the Barrier Activity of Novel, Human Enhancer-Blocking Chromatin Insulators for<br>Hematopoietic Stem Cell Gene Therapy. Human Gene Therapy, 2021, 32, 1186-1199.                                                          | 1.4 | 4         |
| 48 | In Vivo HSC Gene Therapy for Hemoglobinopathies: A Proof of Concept Evaluation in Rhesus Macaques.<br>Blood, 2020, 136, 46-47.                                                                                                           | 0.6 | 3         |
| 49 | Introduction of Two Simultaneous Mutations By Genome Editing Greatly Enhances the Accumulation of the Endogenous Fetal Hemoglobin in Human Normal Erythroid Cells. Blood, 2017, 130, 947-947.                                            | 0.6 | 2         |
| 50 | Cytokine Prestimulation as a Gene Therapy Strategy: Implications for Using the MDR1 Gene as a<br>Dominant Selectable Marker. Blood, 1997, 89, 146-154.                                                                                   | 0.6 | 2         |
| 51 | α4-Integrin deficiency in human CD34+ cells engenders precocious erythroid differentiation but<br>inhibits enucleation. Experimental Hematology, 2022, 108, 16-25.                                                                       | 0.2 | 2         |
| 52 | CD4+c-Met+ltgα4+ T cell subset promotes murine neuroinflammation. Journal of Neuroinflammation, 2022, 19, 103.                                                                                                                           | 3.1 | 2         |
| 53 | Cytokine Exposure Changes the Hierarchy of Molecular Pathway Usage in Bone Marrow Homing<br>Blood, 2005, 106, 3161-3161.                                                                                                                 | 0.6 | 1         |
| 54 | Hematopoietic Stem/Progenitor Cells (HSPC) Mobilization Parameters in Patients Chronically Treated with the CD49d Blocking Antibody Natalizumab Blood, 2007, 110, 177-177.                                                               | 0.6 | 1         |

4

THALIA PAPAYANNOPOULOU

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Insights into the Biology of Mobilized Cells through Innovative Treatment Schedules of the CXCR4<br>Antagonist AMD3100 Blood, 2007, 110, 2229-2229.                                                                                                       | 0.6 | 1         |
| 56 | Gi Protein Signals Are Required for BM Homing of Hemopoietic Progenitor Cells, and Cooperate with<br>Alpha4-Intergrin and Endothelial Selectins Blood, 2004, 104, 2183-2183.                                                                              | 0.6 | 0         |
| 57 | In Vivo Expansion of Transduced Human Erythroid Cells Using an Mpl-Based Cell Growth Switch<br>Blood, 2004, 104, 2100-2100.                                                                                                                               | 0.6 | 0         |
| 58 | Superior Bone Marrow Homing of G-CSF Mobilized Hematopoietic Progenitor Cells (HPC) - A Home<br>Run Blood, 2005, 106, 471-471.                                                                                                                            | 0.6 | 0         |
| 59 | b1 Integrin Deficiency in Both Erythroid Cells and Their Microenvironment Does Not Affect Basal<br>Erythropoiesis but Critically Impairs Survival and Erythroid Response to Phenylhydrazine-Induced<br>Stress in Adult Mice. Blood, 2008, 112, 3567-3567. | 0.6 | 0         |
| 60 | Regulatory Reprogramming of Erythropoiesis By DNMT3A Mutation. Blood, 2018, 132, 4343-4343.                                                                                                                                                               | 0.6 | 0         |
| 61 | Thalassemia Gene Therapy By In Vivo Transduction of Mobilized Hematopoietic Stem Cells (HSCs) with<br>an Integrating Hybrid Adenovirus Vector System. Blood, 2018, 132, 2193-2193.                                                                        | 0.6 | 0         |
| 62 | Combining HPFH Mutations in Human Adult HSCs to Enhance Reactivation of Fetal Hemoglobin. Blood, 2019, 134, 2246-2246.                                                                                                                                    | 0.6 | 0         |
| 63 | The Glucocorticoid Receptor-Dependent Stress Response in Human Erythropoiesis Is BCL11A-Dependent.<br>Blood, 2021, 138, 939-939.                                                                                                                          | 0.6 | 0         |