
Milena De Giorgi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4560856/publications.pdf Version: 2024-02-01

MILENA DE CIORCI

#	Article	IF	CITATIONS
1	Aging of Self-Assembled Lead Halide Perovskite Nanocrystal Superlattices: Effects on Photoluminescence and Energy Transfer. ACS Nano, 2021, 15, 650-664.	7.3	46
2	Improved Photostability in Fluorinated 2D Perovskite Single Crystals. Nanomaterials, 2021, 11, 465.	1.9	8
3	Enhancement of Parametric Effects in Polariton Waveguides Induced by Dipolar Interactions. Physical Review Letters, 2021, 126, 137401.	2.9	9
4	Experimental investigation of a non-Abelian gauge field in 2D perovskite photonic platform. Optica, 2021, 8, 1442.	4.8	14
5	Managing Growth and Dimensionality of Quasi 2D Perovskite Singleâ€Crystalline Flakes for Tunable Excitons Orientation. Advanced Materials, 2021, 33, e2102326.	11.1	20
6	Tuning of the Berry curvature in 2D perovskite polaritons. Nature Nanotechnology, 2021, 16, 1349-1354.	15.6	38
7	Highly Reflective Periodic Nanostructure Based on Thermal Evaporated Tungsten Oxide and Calcium Fluoride for Advanced Photonic Applications. ACS Applied Nano Materials, 2020, 3, 10978-10985.	2.4	5
8	Observation of Two Thresholds Leading to Polariton Condensation in 2D Hybrid Perovskites. Advanced Optical Materials, 2020, 8, 2000176.	3.6	32
9	Quantum hydrodynamics of a single particle. Light: Science and Applications, 2020, 9, 85.	7.7	11
10	Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature, 2020, 578, 381-385.	13.7	130
11	One-step synthesis at room temperature of low dimensional perovskite single crystals with high optical quality. Journal of Luminescence, 2020, 221, 117079.	1.5	10
12	Emerging 2D materials for room-temperature polaritonics. Nanophotonics, 2019, 8, 1547-1558.	2.9	30
13	Self-Trapping of Exciton-Polariton Condensates in GaAs Microcavities. Physical Review Letters, 2019, 123, 047401.	2.9	12
14	Quantum Nature of Light in Nonstoichiometric Bulk Perovskites. ACS Nano, 2019, 13, 10711-10716.	7.3	2
15	Planar chiral plasmonic 2D metamaterial: Design and fabrication. AIP Conference Proceedings, 2019, , .	0.3	2
16	Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Science Advances, 2019, 5, eaav9967.	4.7	114
17	Josephson vortices induced by phase twisting a polariton superfluid. Nature Photonics, 2019, 13, 488-493.	15.6	22
18	High circular dichroism and robust performance in planar plasmonic metamaterial made of nano-comma-shaped resonators. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 3079.	0.9	8

#	Article	IF	CITATIONS
19	First observation of the quantized exciton-polariton field and effect of interactions on a single polariton. Science Advances, 2018, 4, eaao6814.	4.7	57
20	Interactions and scattering of quantum vortices in a polariton fluid. Nature Communications, 2018, 9, 1467.	5.8	46
21	Superluminal X-waves in a polariton quantum fluid. Light: Science and Applications, 2018, 7, 17119-17119.	7.7	17
22	Ultrastrong Plasmon–Exciton Coupling by Dynamic Molecular Aggregation. ACS Photonics, 2018, 5, 143-150.	3.2	48
23	Topological order and thermal equilibrium in polariton condensates. Nature Materials, 2018, 17, 145-151.	13.3	79
24	Tunable Out-of-Plane Excitons in 2D Single-Crystal Perovskites. ACS Photonics, 2018, 5, 4179-4185.	3.2	67
25	Nonlinear Optical Effects with Polariton Lasers in a GaAs Microcavity. Journal of Physical Chemistry C, 2018, 122, 17501-17506.	1.5	6
26	Interaction and Coherence of a Plasmon–Exciton Polariton Condensate. ACS Photonics, 2018, 5, 3666-3672.	3.2	35
27	Pulse, polarization and topology shaping of polariton fluids. , 2017, , .		Ο
28	High-speed flow of interacting organic polaritons. Light: Science and Applications, 2017, 6, e16212-e16212.	7.7	101
29	Macroscopic Two-Dimensional Polariton Condensates. Physical Review Letters, 2017, 118, 215301.	2.9	43
30	Room-temperature superfluidity in a polariton condensate. Nature Physics, 2017, 13, 837-841.	6.5	250
31	Linear and Nonlinear Optical Properties of Single GaAs Nanowires with Polytypism. Journal of Physical Chemistry C, 2016, 120, 17046-17051.	1.5	26
32	The colored Hanbury Brown–Twiss effect. Scientific Reports, 2016, 6, 37980.	1.6	19
33	Twist of generalized skyrmions and spin vortices in a polariton superfluid. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14926-14931.	3.3	56
34	Toward Cavity Quantum Electrodynamics with Hybrid Photon Gap-Plasmon States. ACS Nano, 2016, 10, 11360-11368.	7.3	53
35	Nanoscale Study of the Tarnishing Process in Electron Beam Lithography-Fabricated Silver Nanoparticles for Plasmonic Applications. Journal of Physical Chemistry C, 2016, 120, 24314-24323.	1.5	49
36	Vortex and half-vortex dynamics in a nonlinear spinor quantum fluid. Science Advances, 2015, 1, e1500807.	4.7	57

#	Article	IF	CITATIONS
37	Polarization shaping of Poincaré beams by polariton oscillations. Light: Science and Applications, 2015, 4, e350-e350.	7.7	47
38	Real-space collapse of a polariton condensate. Nature Communications, 2015, 6, 8993.	5.8	54
39	Design and synthesis of fluorenone-based dyes: two-photon excited fluorescent probes for imaging of lysosomes and mitochondria in living cells. Journal of Materials Chemistry B, 2015, 3, 3315-3323.	2.9	50
40	Exciton–Plasmon Coupling Enhancement <i>via</i> Metal Oxidation. ACS Nano, 2015, 9, 9691-9699.	7.3	39
41	Tailoring chiro-optical effects by helical nanowire arrangement. Nanoscale, 2015, 7, 18081-18088.	2.8	43
42	Relaxation Oscillations in the Formation of a Polariton Condensate. Physical Review Letters, 2014, 112, 113602.	2.9	36
43	Ultrafast Control and Rabi Oscillations of Polaritons. Physical Review Letters, 2014, 113, 226401.	2.9	66
44	Polariton devices and quantum fluids. Proceedings of SPIE, 2014, , .	0.8	0
45	Room temperature Bloch surface wave polaritons. Optics Letters, 2014, 39, 2068.	1.7	32
46	Polaritonâ€induced Enhanced Emission from an Organic Dye under the Strong Coupling Regime. Advanced Optical Materials, 2014, 2, 1076-1081.	3.6	46
47	All-optical polariton transistor. Nature Communications, 2013, 4, 1778.	5.8	409
48	Understanding polarization properties of InAs quantum dots by atomistic modeling of growth dynamics. AIP Conference Proceedings, 2013, , .	0.3	1
49	All-optical polariton transistor. , 2013, , .		2
50	Soliton and shock waves in an exciton polariton quantum pond. , 2013, , .		0
51	Control and Ultrafast Dynamics of a Two-Fluid Polariton Switch. Physical Review Letters, 2012, 109, 266407.	2.9	69
52	Avoiding trap states in poly(n-vinylcarbazole) thin films. Organic Electronics, 2012, 13, 2843-2849.	1.4	7
53	The polarization response in InAs quantum dots: theoretical correlation between composition and electronic properties. Nanotechnology, 2012, 23, 165202.	1.3	20
54	Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) Core/Shell Nanocrystals Prepared from CdSe/CdS Nanocrystals by Sequential Cation Exchange. ACS Nano, 2012, 6, 1637-1647.	7.3	138

Milena De Giorgi

#	Article	IF	CITATIONS
55	Graded vertical phase separation of donor/acceptor species for polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 100, 147-152.	3.0	36
56	Temperature and Size Dependence of the Optical Properties of Tetrapod-Shaped Colloidal Nanocrystals Exhibiting Type-II Transitions. Journal of Physical Chemistry C, 2011, 115, 18094-18104.	1.5	17
57	All-optical control of the quantum flow of a polariton condensate. Nature Photonics, 2011, 5, 610-614.	15.6	143
58	Hydrodinamical phenomena in polariton condensates. , 2011, , .		0
59	Study of the radiative recombination processes in tetrapod-shaped CdTe nanocrystals. , 2010, , .		Ο
60	Photoconduction Properties in Aligned Assemblies of Colloidal CdSe/CdS Nanorods. ACS Nano, 2010, 4, 1646-1652.	7.3	73
61	Control of unpolarized emission in closely stacked InAs quantum dot structure. Superlattices and Microstructures, 2010, 47, 72-77.	1.4	9
62	Evidence for an internal field in CdSe/CdS nanorods by time resolved and single rod experiments. Superlattices and Microstructures, 2010, 47, 174-177.	1.4	5
63	Comparison between laserâ€induced nucleation of ZnS and CdS nanocrystals directly into polymer matrices. Polymer Composites, 2010, 31, 1075-1083.	2.3	11
64	Applicability of the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi mathvariant="bold">k</mml:mi><mml:mo>â<</mml:mo><mml:mi mathvariant="bold">p</mml:mi </mml:mrow></mml:math> method to modeling of InAs/GaSb short-period superlattices. Physical Review B, 2009, 79, .	1.1	19
65	Polarized Light Emitting Diode by Long-Range Nanorod Self-Assembling on a Water Surface. ACS Nano, 2009, 3, 1506-1512.	7.3	127
66	Fluorescent Asymmetrically Cobalt-Tipped CdSe@CdS Core@Shell Nanorod Heterostructures Exhibiting Room-Temperature Ferromagnetic Behavior. Journal of the American Chemical Society, 2009, 131, 12817-12828.	6.6	119
67	CdSe/CdS/ZnS Double Shell Nanorods with High Photoluminescence Efficiency and Their Exploitation As Biolabeling Probes. Journal of the American Chemical Society, 2009, 131, 2948-2958.	6.6	247
68	Tetrapod-Shaped Colloidal Nanocrystals of IIâ^VI Semiconductors Prepared by Seeded Growth. Journal of the American Chemical Society, 2009, 131, 2274-2282.	6.6	211
69	Subâ€50â€nm Conjugated Polymer Dots by Nanoprinting. Small, 2008, 4, 1894-1899.	5.2	9
70	High-Q factor single mode circular photonic crystal nano-resonator. Superlattices and Microstructures, 2008, 43, 507-511.	1.4	2
71	The influence of intrinsic and surface states on the emission properties of colloidal nanocrystals. Superlattices and Microstructures, 2008, 43, 528-531.	1.4	2
72	Picosecond timescale carrier dynamics of InAs quantum dots: The role of a continuum background. Superlattices and Microstructures, 2008, 43, 445-448.	1.4	1

#	Article	IF	CITATIONS
73	Enhanced Performances of Quantum Dot Lasers Operating at 1.3 \$mu\$ m. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1188-1196.	1.9	26
74	Subpicosecond timescale carrier dynamics in GaInAsSbâ^•AlGaAsSb double quantum wells emitting at 2.3î¼m. Applied Physics Letters, 2008, 92, .	1.5	20
75	Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers. Nanotechnology, 2008, 19, 275401.	1.3	12
76	Radiative recombination dynamics in tetrapod-shaped CdTe nanocrystals: Evidence for a photoinduced screening of the internal electric field. Applied Physics Letters, 2008, 92, .	1.5	7
77	Evidence of "crossed―transitions in dots-in-a-well structures through waveguide absorption measurements. Applied Physics Letters, 2008, 93, 151112.	1.5	15
78	Intrinsic optical nonlinearity in colloidal seeded grown CdSe/CdS nanostructures: Photoinduced screening of the internal electric field. Physical Review B, 2008, 78, .	1.1	91
79	Type II transition in InSb-based nanostructures for midinfrared applications. Journal of Applied Physics, 2008, 103, 114516.	1.1	9
80	Structural and optical properties of vertically stacked triple InAs dot-in-well structure. Journal of Applied Physics, 2008, 103, .	1.1	20
81	Photoreflectance symmetry and amplitude study of quantum dots in microcavity light emitting diode structure: The cavity-ground state exciton resonance. Journal of Applied Physics, 2007, 101, 024511.	1.1	0
82	Simultaneous filling of InAs quantum dot states from the GaAs barrier under nonresonant excitation. Applied Physics Letters, 2007, 90, 111907.	1.5	19
83	Study of non radiative relaxation and exciton-phonon coupling in colloidal CdTe Quantum Dots. AIP Conference Proceedings, 2007, , .	0.3	0
84	Size Dependent Photomodulated Transmission Spectroscopy of CdTe Tetrapod-shaped Nanocrystals. AIP Conference Proceedings, 2007, , .	0.3	0
85	Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Letters, 2007, 7, 2942-2950.	4.5	1,098
86	Temperature and Size Dependence of Nonradiative Relaxation and Excitonâ^'Phonon Coupling in Colloidal CdTe Quantum Dots. Journal of Physical Chemistry C, 2007, 111, 5846-5849.	1.5	144
87	Picosecond Photoluminescence Decay Time in Colloidal Nanocrystals:  The Role of Intrinsic and Surface States. Journal of Physical Chemistry C, 2007, 111, 10541-10545.	1.5	46
88	Quantum dot nano-cavity emission tuned by a circular photonic crystal lattice. Microelectronic Engineering, 2007, 84, 1570-1573.	1.1	3
89	Exciton transitions in tetrapod-shaped CdTe nanocrystals investigated by photomodulated transmittance spectroscopy. Applied Physics Letters, 2006, 89, 094104.	1.5	10
90	1.32 μm InAs/InGaAs/GaAs quantum dot lasers operating at room temperature with low threshold		2

current density., 2006,,.

#	Article	IF	CITATIONS
91	Fabrication of Colloidal Quantum Dot Microcavities by Imprint Lithography. , 2006, , .		2
92	Microphotoluminescence characterization of alloy fluctuations in InGaAsN/GaAs quantum wells emitting at 1.3 µm. Semiconductor Science and Technology, 2006, 21, 1207-1211.	1.0	0
93	Nanopositioning of colloidal nanocrystal emitters by means of photolithography and e-beam lithography. Physica Status Solidi (B): Basic Research, 2006, 243, 3972-3975.	0.7	10
94	An experimental setup for room temperature waveguide spectroscopy of self-assembled quantum dots. Journal of Optics, 2006, 8, S514-S517.	1.5	1
95	Interplay between stimulated emission and singlet-singlet annihilation in oligothiophene dioxide thin films. Journal of Applied Physics, 2006, 100, 023530.	1.1	11
96	High Q-factor colloidal nanocrystal-based vertical microcavity by hot embossing technology. Applied Physics Letters, 2006, 88, 181108.	1.5	19
97	Tailoring the emission spectrum of colloidal nanocrystals by means of lithographically-imprinted hybrid vertical microcavities. , 2005, 5840, 168.		2
98	Photomodulated reflectance studies of quantum dot in MCLED structures: monitoring cavity-ground state exciton resonance. Microelectronics Journal, 2005, 36, 200-202.	1.1	0
99	Optical properties of colloidal nanocrystal spheres and tetrapods. Microelectronics Journal, 2005, 36, 552-554.	1.1	11
100	Improved performances of 1.3μm InGaAs QD structures grown at high temperature by metal organic chemical vapour deposition. Microelectronics Journal, 2005, 36, 180-182.	1.1	1
101	Determination of band-offset enhanced in InGaAsP–InGaAsP strained multiquantum wells by photocurrent measurements. Journal of Applied Physics, 2005, 97, 043705.	1.1	3
102	High-efficiency 1.3μmInGaAsâ^•GaAs quantum-dot microcavity light-emitting diodes grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2005, 86, 151118.	1.5	4
103	Optical properties of tetrapod-shaped CdTe nanocrystals. Applied Physics Letters, 2005, 87, 224101.	1.5	44
104	Long wavelength emission in InxGa1â^'xAs quantum dot structures grown in a GaAs barrier by metalorganic chemical vapor deposition. Applied Physics Letters, 2004, 84, 1868-1870.	1.5	27
105	1.31â€,μ4m InGaAs quantum dot light-emitting diodes grown directly in a GaAs matrix by metalorganic chemical-vapor deposition. Applied Physics Letters, 2004, 84, 2482-2484.	1.5	18
106	Electrically injected InGaAs/GaAs quantum-dot microcavity light-emitting diode operating at 1.3 μm and grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2004, 84, 4155-4157.	1.5	17
107	Tuning of long-wavelength emission in InxGa1â^'xAs quantum dot structures. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 390-395.	1.3	0
108	Study of the exciton transitions in InGaAsP/InGaAsP MQWs to determine the band offset of the structure. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 535-538.	0.8	1

#	Article	IF	CITATIONS
109	InGaAs quantum dot structures grown in GaAs barrier by metal-organic chemical vapor deposition for high-efficient long-wavelength emission. , 2004, 5361, 44.		0
110	Light emission tuning of In0.5Ga0.5As/In0.05Ga0.95As quantum dots by a two-dimensional photonic crystal. Microelectronic Engineering, 2003, 67-68, 832-837.	1.1	1
111	Open issues for lasing at 1.3 μm in MOCVD-grown quantum dots. Physica Status Solidi (B): Basic Research, 2003, 238, 349-352.	0.7	0
112	Comparison of radiative and structural properties of 1.3 μm InxGa(1â^`x)As quantum-dot laser structures grown by metalorganic chemical vapor deposition and molecular-beam epitaxy: Effect on the lasing properties. Applied Physics Letters, 2003, 82, 3632-3634.	1.5	31
113	Engineering the Electronic Structure and the Optical Properties of Semiconductor Quantum Dots. , 2003, , 1-50.		0
114	Tunable single and dual mode operation of an external cavity quantum-dot injection laser. Journal Physics D: Applied Physics, 2003, 36, 1928-1930.	1.3	27
115	Electron-Hole Dynamics in MOCVD-Grown InGaAs/GaAs Quantum Dots Emitting at 1.3 ?m. Physica Status Solidi A, 2002, 190, 561-564.	1.7	0
116	Capture and thermal re-emission of carriers in long-wavelength InGaAs/GaAs quantum dots. Applied Physics Letters, 2001, 79, 3968-3970.	1.5	64
117	Effects of coupling on the structural properties of InxGa1â^xAs/GaAs 1-D and 0-D self-organized quantum structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 87, 256-261.	1.7	3
118	Energy levels and far-infrared absorption of multi-stacked dots. Physica E: Low-Dimensional Systems and Nanostructures, 2001, 11, 41-50.	1.3	27
119	Nanoscale Compositional Fluctuations in Single InGaAs/GaAs Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 17-20.	0.7	8
120	Interpretation of phase and strain contrast of TEM images ofInxGa1â^'xAs/GaAsquantum dots. Physical Review B, 2001, 63, .	1.1	24
121	Electronic Levels and Recombination Lifetimes for Quantum Wires in a Magnetic Field. Physica Status Solidi A, 2000, 178, 239-242.	1.7	3
122	Excitonic and Free Carrier Recombination in InxGa1xAs/GaAs V-Shaped Quantum Wire for Different In Content. Physica Status Solidi A, 2000, 178, 243-248.	1.7	1
123	Correlation between shape and electronic states in nanostructures. Micron, 2000, 31, 245-251.	1.1	6
124	Time-resolved magnetospectroscopy ofInxGa1â^'xAs/GaAsV-shaped quantum wires. Physical Review B, 2000, 61, 12658-12661.	1.1	6
125	Time resolved screening of the piezoelectric field in InGaAs/GaAs V-shaped quantum wires of variable profile. Journal of Physics Condensed Matter, 1999, 11, 5989-5997.	0.7	3