Keira A Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4560202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nature Genetics, 2017, 49, 395-402.	21.4	258
2	Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal. PLoS Medicine, 2015, 12, e1001880.	8.4	236
3	Efflux Inhibition with Verapamil Potentiates Bedaquiline in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2014, 58, 574-576.	3.2	145
4	Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nature Genetics, 2016, 48, 544-551.	21.4	145
5	Phage Therapy of <i>Mycobacterium</i> Infections: Compassionate Use of Phages in 20 Patients With Drug-Resistant Mycobacterial Disease. Clinical Infectious Diseases, 2023, 76, 103-112.	5.8	109
6	Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nature Medicine, 2021, 27, 1357-1361.	30.7	94
7	Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: progress, promise, and challenges. Genome Medicine, 2019, 11, 45.	8.2	88
8	Rising to the challenge: new therapies for tuberculosis. Trends in Microbiology, 2013, 21, 493-501.	7.7	74
9	Mycobacterium abscessus <scp>l</scp> , <scp>d</scp> -Transpeptidases Are Susceptible to Inactivation by Carbapenems and Cephalosporins but Not Penicillins. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	50
10	Paradoxical Hypersusceptibility of Drug-resistant M ycobacterium tuberculosis to β-lactam Antibiotics. EBioMedicine, 2016, 9, 170-179.	6.1	39
11	Combined pars plana vitrectomy and lens management in complex vitreoretinal disease. Seminars in Ophthalmology, 2003, 18, 132-141.	1.6	37
12	Preliminary, Real-world, Multicenter Experience With Omadacycline for <i>Mycobacterium abscessus</i> Infections. Open Forum Infectious Diseases, 2021, 8, ofab002.	0.9	37
13	Mycobacterium abscessus and β-Lactams: Emerging Insights and Potential Opportunities. Frontiers in Microbiology, 2018, 9, 2273.	3.5	35
14	Evidence for Expanding the Role of Streptomycin in the Management of Drug-Resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	30
15	Molecular Basis of Drug Resistance in <i>Mycobacterium tuberculosis</i> . Microbiology Spectrum, 2014, 2, .	3.0	29
16	Global phylogenomic analyses of Mycobacterium abscessus provide context for non cystic fibrosis infections and the evolution of antibiotic resistance. Nature Communications, 2021, 12, 5145.	12.8	27
17	Extensive global movement of multidrug-resistant <i>M. tuberculosis</i> strains revealed by whole-genome analysis. Thorax, 2019, 74, 882-889.	5.6	24
18	Coadministration of Oral Levofloxacin With Agents That Impair Absorption: Impact on Antibiotic Resistance. Infection Control and Hospital Epidemiology, 2008, 29, 975-977.	1.8	22

Keira A Cohen

#	Article	IF	CITATIONS
19	Biomarkers for Tuberculosis Based on Secreted, Species-Specific, Bacterial Small Molecules. Journal of Infectious Diseases, 2015, 212, 1827-1834.	4.0	20
20	Patients infected with Mycobacterium africanum versus Mycobacterium tuberculosis possess distinct intestinal microbiota. PLoS Neglected Tropical Diseases, 2020, 14, e0008230.	3.0	14
21	Fatal Nosocomial MDR TB Identified through Routine Genetic Analysis and Whole-Genome Sequencing. Emerging Infectious Diseases, 2015, 21, 1082-1084.	4.3	12
22	Differential HLA allele frequency in <i>Mycobacterium africanum</i> vs <i>Mycobacterium tuberculosis</i> in Mali. Hla, 2019, 93, 24-31.	0.6	10
23	Nebulized Bacteriophage in a Patient With Refractory <i>Mycobacterium abscessus</i> Lung Disease. Open Forum Infectious Diseases, 2022, 9, .	0.9	10
24	Stool microbiome reveals diverse bacterial ureases as confounders of oral urea breath testing for <i>Helicobacter pylori</i> and <i>Mycobacterium tuberculosis</i> in Bamako, Mali. Journal of Breath Research, 2016, 10, 036012.	3.0	9
25	Association of Mycobacterium africanum Infection with Slower Disease Progression Compared with Mycobacterium tuberculosis in Malian Patients with Tuberculosis. American Journal of Tropical Medicine and Hygiene, 2020, 102, 36-41.	1.4	9
26	Vitamin D Deficiency Is Associated with Increased Nontuberculous Mycobacteria Risk in Cystic Fibrosis. Annals of the American Thoracic Society, 2021, 18, 913-916.	3.2	6
27	Getting to the point in point-of-care diagnostics for tuberculosis. Journal of Clinical Investigation, 2020, 130, 5671-5673.	8.2	5
28	Treatment of Nontuberculous Mycobacterial Lung Disease Is Complex; Thus, Shared Decision Making Is Critical. Annals of the American Thoracic Society, 2022, 19, 1265-1267.	3.2	2
29	No Amikacin, No Problem: a Successful Treatment Approach for Pediatric Otomastoiditis Due to Amikacin-Resistant Mycobacterium abscessus. Antimicrobial Agents and Chemotherapy, 2019, 64, .	3.2	1
30	Low rates of macrolide-resistant Mycobacterium avium complex in cystic fibrosis despite chronic azithromycin therapy. Journal of Cystic Fibrosis, 2021, 20, 555-557.	0.7	0
31	Molecular Basis of Drug Resistance inMycobacterium tuberculosis. , 0, , 411-429.		0