Kiron M Das

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4559696/publications.pdf

Version: 2024-02-01

687363 794594 66 408 13 19 citations h-index g-index papers 67 67 67 650 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Transformation of benign Barrett's epithelium by repeated acid and bile exposure over 65 weeks: A novel <i>in vitro</i> model. International Journal of Cancer, 2011, 128, 274-282.	5.1	39
2	Isolation and sequencing of a novel tropomyosin isoform preferentially associated with colon cancer. Gastroenterology, 2002, 123, 152-162.	1.3	36
3	Repeated exposure to acid and bile selectively induces colonic phenotype expression in a heterogeneous Barrett's epithelial cell line. Laboratory Investigation, 2008, 88, 643-651.	3.7	34
4	Barrett's metaplasia develops from cellular reprograming of esophageal squamous epithelium due to gastroesophageal reflux. American Journal of Physiology - Renal Physiology, 2017, 312, G615-G622.	3.4	28
5	Long-term effects of H. pylori eradication on epigenetic alterations related to gastric carcinogenesis. Scientific Reports, 2018, 8, 14369.	3.3	26
6	Cellular origins and molecular mechanisms of Barrett's esophagus and esophageal adenocarcinoma. Annals of the New York Academy of Sciences, 2013, 1300, 187-199.	3.8	25
7	Barrett's esophagus: cancer and molecular biology. Annals of the New York Academy of Sciences, 2013, 1300, 296-314.	3.8	24
8	Effect of Long-Term Mesalamine Therapy on Cancer-Associated Gene Expression in Colonic Mucosa of Patients with Ulcerative Colitis. Digestive Diseases and Sciences, 2019, 64, 740-750.	2.3	19
9	Prolonged exposure to acid and bile induces chromosome abnormalities that precede malignant transformation of benign Barrett's epithelium. Molecular Cytogenetics, 2012, 5, 43.	0.9	18
10	Antibody to Tropomyosin Isoform 5 and Complement Induce the Lysis of Colonocytes in Ulcerative Colitis. American Journal of Gastroenterology, 2009, 104, 2996-3003.	0.4	16
11	Is IBD an autoimmune disorder?. Inflammatory Bowel Diseases, 2008, 14, S97-S101.	1.9	15
12	High resolution integrative analysis reveals widespread genetic and epigenetic changes after chronic ⟨i>inâ€vitro⟨ i> acid and bile exposure in barrett's epithelium cells. Genes Chromosomes and Cancer, 2013, 52, 1123-1132.	2.8	14
13	Inducing and Maintaining Remission in Ulcerative Colitis. Journal of Clinical Gastroenterology, 2010, 44, 531-535.	2.2	13
14	Mesalamine Suppresses the Expression of TC22, a Novel Tropomyosin Isoform Associated with Colonic Neoplasia. Molecular Pharmacology, 2009, 76, 183-191.	2.3	12
15	Tropomyosins in Human Diseases: Ulcerative Colitis. Advances in Experimental Medicine and Biology, 2008, 644, 158-167.	1.6	12
16	Molecular alterations and PD-L1 expression in non-ampullary duodenal adenocarcinoma: Associations among clinicopathological, immunophenotypic and molecular features. Scientific Reports, 2019, 9, 10526.	3.3	9
17	DNA methylation silencing of microRNA gene methylator in the precancerous background mucosa with and without gastric cancer: Analysis of the effects of H. pylori eradication and long-term aspirin use. Scientific Reports, 2019, 9, 12559.	3.3	9
18	miR-206 as a Biomarker for Response to Mesalamine Treatment in Ulcerative Colitis. Inflammatory Bowel Diseases, 2019, 25, 78-84.	1.9	9

#	Article	IF	CITATIONS
19	Immunopathogenesis of primary sclerosing cholangitis: possible role of a shared colonic and biliary epithelial antigen. Journal of Gastroenterology and Hepatology (Australia), 2004, 19, S290-S294.	2.8	7
20	Barrett's esophagus: histology and immunohistology. Annals of the New York Academy of Sciences, 2011, 1232, 76-92.	3.8	7
21	Localization of specialized intestinal metaplasia and the molecular alterations in Barrett esophagus in a Japanese population: an analysis of biopsy samples based on the "Seattle―biopsy protocol. Human Pathology, 2016, 51, 32-40.	2.0	7
22	Barrett's esophagus: genetic and cell changes. Annals of the New York Academy of Sciences, 2011, 1232, 18-35.	3.8	6
23	Effects of long-term aspirin use on molecular alterations in precancerous gastric mucosa in patients with and without gastric cancer. Scientific Reports, 2017, 7, 13384.	3.3	6
24	Autoimmunity in Inflammatory Bowel Disease. Canadian Journal of Gastroenterology & Hepatology, 1993, 7, 102-109.	1.7	5
25	Evaluation of a U.S. National Cohort to Determine Utilization in Colectomy Rates for Ulcerative Colitis Among Ethnicities. Inflammatory Bowel Diseases, 2022, 28, 54-61.	1.9	3
26	Recurring Translocations in Barrett's Esophageal Adenocarcinoma. Frontiers in Genetics, 2021, 12, 674741.	2.3	3
27	Gene Expression in Barrett's Esophagus Cell Lines Resemble Esophageal Squamous Cell Carcinoma Instead of Esophageal Adenocarcinoma. Cancers, 2021, 13, 5971.	3.7	2
28	Sull 178 High Resolution Integrative Analysis Reveals Widespread Genetic and Epigenetic Alterations in Barrett's Epithelial Cells Exposed to Acid and Bile. Gastroenterology, 2012, 142, S-444.	1.3	1
29	Mo1163 Carcinogenic Effects of Benzo[a]Pyrene (Cyp 450 Activation) on HET-1A and Bar-T Cell Line Could Be Reversed by Curcumin. Gastroenterology, 2013, 144, S-595-S-596.	1.3	1
30	899 Transformation of Benign Barrett's Epithelial Cells By Repeated Acid and Bile Exposure Over 22-65 Weeks: An in-Vitro Model of Metaplasia to Neoplasia By Environmental Factors. Gastroenterology, 2008, 134, A-129.	1.3	0
31	W1102 Mesalamine Modulates Several Genes Related to Carcinogenesis, Inflammation, and Cell Cycle Pathways. Gastroenterology, 2008, 134, A-633.	1.3	0
32	M1984 Cellular Phenotypes in Adenocarcinoma of the Esophagus. Gastroenterology, 2008, 134, A-445.	1.3	0
33	T1234 Autoimmunity in Ulcerative Colitis: TNF-α and Bacterial Lipopolysaccharide Induce Expression of the Autoantigen Human Tropomyosin Isoform 5. Gastroenterology, 2008, 134, A-512.	1.3	0
34	S1962 Tropomyosin Isoform, TC22, a Novel Biomarker Associated With Neoplasia and Carcinoma. Gastroenterology, 2010, 138, S-290.	1.3	0
35	S1058 Modulation of Cell Cycle Pathways in an in-Vitro Chronic Acid Plus Bile Exposure Model of Barrett's Epithelium. Gastroenterology, 2010, 138, S-169.	1.3	0
36	S1066 Increase Oncogenecity of Bar-T Cells With Continued Exposure to Acid Plus Bile Beyond 56 Weeks. Gastroenterology, 2010, 138, S-171.	1.3	0

#	Article	IF	CITATIONS
37	Continued Mesalamine Exposure is Required for Sustained Anti-Inflammatory and Chemoprevention Effects: Molecular Evidence Using an in-Vitro Model. Gastroenterology, 2011, 140, S-401.	1.3	O
38	Aberrant, DNA Damage-Response May Contribute in the Carcinogenesis Process in Barrett's Epithelium. Gastroenterology, 2011, 140, S-667.	1.3	0
39	TC22, a Novel Colorectal Cancer Biomarker Remains Continuously Suppressed Upon Repeated Mesalamine Exposure to Colorectal Cancer Cells. Gastroenterology, 2011, 140, S-344.	1.3	0
40	Cellular Phenotypic Changes With Long-Term Acid and Bile Exposure to a Barrett's Epithelial Cell Line. Gastroenterology, 2011, 140, S-222.	1.3	0
41	Sull79 Acid Suppression Can Impede Progression of Barrett's Epithelium to Dysplasia. Gastroenterology, 2012, 142, S-444.	1.3	0
42	Mo1903 Molecular Effect of Acid and Bile Suppression on Progression of Be to Neoplasia. Gastroenterology, 2013, 144, S-689.	1.3	0
43	Mo1938 Differential Response of Normal Esophageal Squamous Cells to Acid and Bile Salt-Induced Injury May Predispose to Barrett's Metaplasia. Gastroenterology, 2013, 144, S-700.	1.3	0
44	Mo1935 Exposure to Acid and Bile Salts Induces Features of Epithelial Mesenchymal Transition in Non-Neoplastic Barrett's Epithelial Cells: A Potential Mechanism for Reflux-Induced Remodeling and Carcinogenesis in Barrett's Esophagus. Gastroenterology, 2013, 144, S-699.	1.3	0
45	Mo1946 Progressive Increase in Proliferation, Reduced Apoptosis, and Development of Serum Dependence in Neoplastic Cells of the Barrett's Epithelium Carcinogenesis Model. Gastroenterology, 2013, 144, S-701-S-702.	1.3	0
46	Sa1960 Carcinogenesis-Genes Identified in Colon Tissue As Possible Targets for Chemo Preventive Effect of Mesalamine in Patients With Chronic Ulcerative Colitis. Gastroenterology, 2014, 146, S-340.	1,3	0
47	Tu1667 Genomic Changes Correlate With Transformed Phenotype in a Dynamic in-Vitro Model of Barrett's Carcinogenesis. Gastroenterology, 2014, 146, S-813-S-814.	1.3	0
48	Sa1954 Benzo[a]Pyrene-Induced CYP 1A1/1B1 Genes May Promote Development of Esophageal Adenocarcinoma While Curcumin Attenuates Such Induction. Gastroenterology, 2014, 146, S-338.	1.3	0
49	930 Acid and Bile Salts Induce Features of Epithelial Mesenchymal Transition in Non-Neoplastic Barrett's Epithelial Cells Through Increased VEGFSignaling. Gastroenterology, 2014, 146, S-160.	1.3	0
50	Sa1957 Nano-Curcumin Inhibits Neoplastic Process in the Barrett's Epithelial Carcinogenesis Model. Gastroenterology, 2015, 148, S-367.	1,3	0
51	Sa1915 Chromosome Translocation T(2,10,16) Marks â€ ⁻ Point of No-Return' in Barrett's Epithelium Carcinogenesis, In-Vitro Model. Gastroenterology, 2015, 148, S-354.	1.3	0
52	Sa1886 Esophageal Squamous Cells Exposed Repeatedly to Acid and Bile Salts In Vitro Exhibit Columnar Differentiation With Features of Barrett's Metaplasia. Gastroenterology, 2015, 148, S-346-S-347.	1.3	0
53	544 In Non-Neoplastic Barrett's Epithelial Cells, Acid and Bile Salts Activate VEGF Signaling to Induce Epithelial Mesenchymal Transition Through ZEB2, a Transcriptional Repressor of E-Cadherin. Gastroenterology, 2015, 148, S-109.	1.3	0
54	Su2052 NOTCH1 Is Overexpressed in Barrett's Epithelial Neoplasia and Can Be Inhibited by Curcumin. Gastroenterology, 2016, 150, S622.	1,3	0

#	Article	IF	CITATIONS
55	Tu2055 BMP Pathway Inhibitors May Prevent Neoplastic Progression of Barrett's Epithelium. Gastroenterology, 2016, 150, S1011-S1012.	1.3	0
56	Su2061 Nano-Curcumin Potentiates the Anti-Neoplastic Effects of Mesalamine in Colorectal Cancer. Gastroenterology, 2016, 150, S624.	1.3	0
57	Acid and Bile Induced TGFB1 and NOTCH1 Regulates Epithelial Mesenchymal Transition in Barrett's Carcinogenesis. Gastroenterology, 2017, 152, S238-S239.	1.3	O
58	In Non-Neoplastic Barrett's Epithelial Cells, Acid and Bile Salts Induce Epithelial Mesenchymal Transition (EMT) through a Hif-Mediated Reduction in Microrna-200a and -200b Expression. Gastroenterology, 2017, 152, S661.	1.3	0
59	Effect of Benzo[A]Pyrene Along with Acid and Bile is Highly Carcinogenic as Shown in Thein-Vitro Barrett's Esophagus Carcinogenesis (BEC) Model. Gastroenterology, 2017, 152, S834-S835.	1.3	O
60	Curcumin, a Nutraceutical, Prevents Acid and Bile Induced Colonic Phenotype of Metaplasia in Bar-T Cells. Gastroenterology, 2017, 152, S836.	1.3	0
61	Novel Recurring Fusions: Predictive Markers of Esophageal Adenocarcinoma. Gastroenterology, 2017, 152, S1029.	1.3	0
62	19 - In vitro Studies of HTERT Immortalized Normal Esophageal Squamous Epithelial Cells show Progressive Morphological and Molecular Characteristics of Inflammation:Metaplasia: Neoplasia Sequence. Gastroenterology, 2018, 154, S-7.	1.3	0
63	Tu1841 – Comparative Analysis of Blood and Mucosal Mir-206 in Ulcerative Colitis Patients Treated with 5-Aminosalicylic Acid (5-ASA). Gastroenterology, 2019, 156, S-1145.	1.3	O
64	Tu1160 – Gene Expression Signature of the "Point of No Return―in Barrett's Epithelial Carcinogenesis. Gastroenterology, 2019, 156, S-967.	1.3	0
65	Sa2015 – 5-Aminosalicylic Acid Inhibits Xenobiotic Metabolism in Patients with Ulcerative Colitis: A Novel Pathway for Chemoprevention. Gastroenterology, 2019, 156, S-472-S-473.	1.3	O
66	An In-Vitro Model of Barrett's Epithelium (BE). American Journal of Gastroenterology, 2006, 101, S62.	0.4	0