Jian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4559318/publications.pdf

Version: 2024-02-01

			61687	3	7326
257	11,481		45		100
papers	citations		h-index g		g-index
057	0.57		057		5747
257	257		257		5747
all docs	docs citations		times ranked		citing authors

#	Article	IF	CITATIONS
1	Universal co-existence of photovoltaics and ferroelectricity from a two-dimensional 3R bilayer BX (X) Tj ETQq1 10.	.784314 rg 2.7	gBT Overloc
2	In-plane magnetization and electronic structures in BiFeO3/graphene superlattice. Applied Physics Letters, 2022, 120, .	1.5	3
3	Nonlinear Hall effect induced by internal Coulomb interaction and phase relaxation process in a four-terminal system with time-reversal symmetry. Physical Review B, 2022, 105, .	1.1	8
4	Valley-symmetry-broken magnetic topological responses in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mo>(<mml:mrow. .<="" 105,="" 2022,="" b,="" physical="" review="" td=""><td>mo> <mml< td=""><td>:mi>Pt</td></mml<></td></mml:mrow.></mml:mo></mml:mrow></mml:msub></mml:mrow></mml:math>	mo> <mml< td=""><td>:mi>Pt</td></mml<>	:mi>Pt
5	Critical behavior and phase diagram of layered ferromagnetic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>FeTa</mml:mi><mml:mathvariant="normal">S<mml:mn>6</mml:mn></mml:mathvariant="normal"></mml:msub></mml:mrow></mml:math> single crystals. Physical Review B. 2022. 105.	nn>31.1	nl:mn>
6	Jacutingaite family: An efficient platform for coexistence of spin valley Hall effects, valley spin-valve realization, and layer spin crossover. Physical Review B, 2022, 105, .	1.1	8
7	Towards ultrafast cooling through transient phonon currents: A closed-form solution. Physical Review B, 2021, 103, .	1.1	1
8	Transport induced dimer state from topological corner states. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	7
9	A high-temperature quantum anomalous Hall effect in electride gadolinium monohalides. Journal of Materials Chemistry C, 2021, 9, 9539-9544.	2.7	7
10	Noncollinear frustrated antiferromagnetic Mn3P monolayer and its tunability via a spin degree of freedom. Journal of Materials Chemistry C, 2020, 8, 11369-11375.	2.7	3
11	Deep Mining Stable and Nontoxic Hybrid Organic–Inorganic Perovskites for Photovoltaics via Progressive Machine Learning. ACS Applied Materials & Los Progressive Machine Machin	4.0	20
12	Emerging negative differential resistance effects and novel tunable electronic behaviors of the broken-gap KAgSe/SiC ₂ van der Waals heterojunction. Journal of Materials Chemistry C, 2020, 8, 8107-8119.	2.7	17
13	Time-dependent thermoelectric transport in mesoscopic systems under a quantum quench. Physical Review B, 2020, 101, .	1.1	3
14	Two-dimensional few-layered PC ₃ as a promising photocatalyst for overall water splitting. Physical Chemistry Chemical Physics, 2020, 22, 9477-9486.	1.3	12
15	Global discovery of stable and non-toxic hybrid organic-inorganic perovskites for photovoltaic systems by combining machine learning method with first principle calculations. Nano Energy, 2019, 66, 104070.	8.2	48
16	Frequency-dependent transport properties in disordered systems: A generalized coherent potential approximation approach. Physical Review B, 2019, 99, .	1.1	2
17	Valley filtering effect of phonons in graphene with a grain boundary. Physical Review B, 2019, 99, .	1.1	15
18	Rectifying full-counting statistics in a spin Seebeck engine. Physical Review B, 2018, 97, .	1.1	23

#	Article	IF	Citations
19	Thermodynamics of energy, charge, and spin currents in a thermoelectric quantum-dot spin valve. Physical Review B, 2018, 97, .	1.1	12
20	Spin-resolved electron waiting times in a quantum-dot spin valve. Physical Review B, 2018, 97, .	1.1	14
21	A novel electrically controllable volatile memory device based on few-layer black phosphorus. Journal of Materials Chemistry C, 2018, 6, 2460-2466.	2.7	15
22	Photogalvanic effect induced fully spin polarized current and pure spin current in zigzag SiC nanoribbons. Physical Chemistry Chemical Physics, 2018, 20, 26744-26751.	1.3	42
23	Magnetization dynamics induced by the Rashba effect in ferromagnetic films. Nanoscale, 2018, 10, 18728-18733.	2.8	1
24	Thermal rectification in a double quantum dots system with a polaron effect. Physical Review B, 2018, 97, .	1.1	11
25	Excitation Dependent Phosphorous Property and New Model of the Structured Green Luminescence in ZnO. Scientific Reports, 2017, 7, 41460.	1.6	22
26	All-electrical generation of spin-polarized currents in quantum spin Hall insulators. Physical Review B, 2017, 95, .	1.1	26
27	Fast algorithm for transient current through open quantum systems. Physical Review B, 2017, 95, .	1.1	8
28	Full counting statistics of conductance for disordered systems. Physical Review B, 2017, 96, .	1.1	6
29	Role of free electrons in phosphorescence in n-type wide bandgap semiconductors. Physical Chemistry Chemical Physics, 2017, 19, 30332-30338.	1.3	4
30	Short-time dynamics of molecular junctions after projective measurement. Physical Review B, 2017, 96, .	1.1	10
31	Entanglement entropy fluctuation and distribution for open systems. Physical Review B, 2017, 95, .	1.1	5
32	Giant magnetoresistance and perfect spin filter effects in manganese phthalocyanine based molecular junctions. Nanoscale, 2017, 9, 12684-12689.	2.8	41
33	First-principles investigation of transient spin transfer torque in magnetic multilayer systems. Physical Review B, 2017, 96, .	1.1	7
34	Ferroelectricity and tunneling electroresistance effect driven by asymmetric polar interfaces in all-oxide ferroelectric tunnel junctions. Applied Physics Letters, 2016, 108, .	1.5	61
35	Full-counting statistics of transient energy current in mesoscopic systems. Physical Review B, 2016, 93,	1.1	29
36	Spin-dependent Seebeck effects in graphene-based molecular junctions. Physical Review B, 2016, 93, .	1.1	63

#	Article	IF	CITATIONS
37	Giant tunnel magneto-resistance in graphene based molecular tunneling junction. Nanoscale, 2016, 8, 3432-3438.	2.8	30
38	Transport properties of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mtext> WSe </mml:mtext> <mml:mn> heterojunctions: A first-principles study. Physical Review B, 2015, 91, .</mml:mn></mml:msub></mml:math>	2 <b imml:m	ın> 1⊉ mml:msul
39	A gauge invariant theory for time dependent heat current. New Journal of Physics, 2015, 17, 053034.	1.2	8
40	Waiting time distribution of quantum electronic transport in the transient regime. Physical Review B, $2014, 89, .$	1.1	48
41	Investigation of transient heat current from first principles using complex absorbing potential. Physical Review B, 2014, 90, .	1.1	12
42	Full-counting statistics of charge and spin transport in the transient regime: A nonequilibrium Green's function approach. Physical Review B, 2014 , 90 , .	1.1	52
43	Statistical properties of electrochemical capacitance in disordered mesoscopic capacitors. Physical Review B, 2014, 89, .	1.1	6
44	Universal transport properties of three-dimensional topological insulator nanowires. Physical Review B, 2014, 89, .	1.1	24
45	Time-dependent quantum transport theory from non-equilibrium Green's function approach. Journal of Computational Electronics, 2013, 12, 343-355.	1.3	12
46	First-principles investigation of transient current in molecular devices by using complex absorbing potentials. Physical Review B, 2013, 87, .	1.1	39
47	First-principles investigation of transient dynamics of molecular devices. Physical Review B, 2012, 86, .	1.1	36
48	First-principles investigation of alternating current density distribution in molecular devices. Physical Review B, 2012, 86, .	1.1	15
49	First-principles calculation of the Andreev conductance of carbon wires. Physical Review B, 2012, 86, .	1.1	6
50	Numerical study of parametric pumping current in mesoscopic systems in the presence of a magnetic field. Physical Review B, $2011, 84, .$	1.1	8
51	First-principles investigation of transport properties through longitudinal unzipped carbon nanotubes. Physical Review B, 2010, 81, .	1.1	22
52	Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime. Physical Review B, 2010, 81, .	1.1	16
53	Transient dynamics of molecular devices under a steplike pulse bias. Physical Review B, 2010, 81, .	1.1	29
54	Theoretical investigation of how edge states are destroyed in disordered mesoscopic samples. Physical Review B, 2009, 79, .	1.1	3

#	Article	IF	CITATIONS
55	Oscillation of dynamic conductance of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mrow> <mml:mrow> <mml:mtext> Al-C </mml:mtext> </mml:mrow> <mml:mi>n Nonequilibrium Green's function and density functional theory study. Physical Review B, 2009, 79, .</mml:mi></mml:mrow></mml:mrow></mml:math>	< ∤ra ml:mi>	25 mml:msu
56	First-principles calculation of chiral current and quantum self-inductance of carbon nanotubes. Physical Review B, 2009, 80, .	1.1	7
57	Nernst and Seebeck effects in a graphene nanoribbon. Physical Review B, 2009, 80, .	1.1	73
58	Relation between nonequilibrium Green's function and Lippmann-Schwinger formalism in the first-principles quantum transport theory. Physical Review B, 2009, 79, .	1.1	42
59	Controllable Andreev Retroreflection and Specular Andreev Reflection in a Four-Terminal Graphene-Superconductor Hybrid System. Physical Review Letters, 2009, 103, 167003.	2.9	71
60	Ab initiocalculation of transverse spin current in graphene nanostructures. Physical Review B, 2009, 79, .	1.1	43
61	Current conserving nonequilibrium ac transport theory. Physical Review B, 2009, 79, .	1.1	31
62	Spin bias measurement based on a quantum point contact. Applied Physics Letters, 2008, 93, 142107.	1.5	16
63	Disorder-Induced Enhancement of Transport through Graphene <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi><mml:mi><mml:mi></mml:mi></mml:mi></mml:math> Junctions. Physical Review Letters. 2008. 101. 166806.	2.9	147
64	Persistent spin current in nanodevices and definition of the spin current. Physical Review B, 2008, 77, .	1.1	95
65	Quantitative Analysis of Nonequilibrium Spin Injection into Molecular Tunnel Junctions. Physical Review Letters, 2008, 100, 056803.	2.9	48
66	Current fluctuations in the transient regime: An exact formulation for mesoscopic systems. Physical Review B, 2008, 77, .	1.1	27
67	Influence of capping layer and atomic interdiffusion on the strain distribution in single and double self-assembled InAsâ^•GaAs quantum dots. Applied Physics Letters, 2008, 92, 083112.	1.5	14
68	Definition of current density in the presence of a non-local potential. Nanotechnology, 2008, 19, 155401.	1.3	23
69	Emittance fluctuation of mesoscopic conductors in the presence of disorders. Nanotechnology, 2008, 19, 435402.	1.3	7
70	Conductance spectra of metallic carbon nanotube bundles from first principles. Physical Review B, 2008, 78, .	1.1	6
71	Charge relaxation resistance at atomic scale: Anab initiocalculation. Physical Review B, 2008, 77, .	1.1	9
72	Influence of dephasing on the quantum Hall effect and the spin Hall effect. Physical Review B, 2008, 77,	1.1	45

#	Article	lF	CITATIONS
73	Universal Quantized Spin-Hall Conductance Fluctuation in Graphene. Physical Review Letters, 2008, 101, 016804.	2.9	28
74	Theory of nonequilibrium transient transport in nanostructures. International Journal of Nanotechnology, 2008, 5, 1094.	0.1	0
75	A variant transfer matrix method suitable for transport through multi-probe systems. Nanotechnology, 2007, 18, 435402.	1.3	15
76	Shot noise of charge current and spin current in the presence of Rashba interaction. Nanotechnology, 2007, 18, 145401.	1.3	7
77	Nonadiabatic quantum spin pump: Interplay between spatial interference and photon-assisted tunneling in two-dimensional Rashba systems. Physical Review B, 2007, 75, .	1.1	29
78	Symmetry and transport property of spin current induced spin-Hall effect. Physical Review B, 2007, 75, .	1.1	32
79	Statistical analysis for current fluctuations in a disordered quantum pump. Physical Review B, 2007, 76, .	1.1	0
80	Low-Field Phase Diagram of the Spin Hall Effect in the Mesoscopic Regime. Physical Review Letters, 2007, 98, 196402.	2.9	12
81	Quantum inductance and negative electrochemical capacitance at finite frequency in a two-plate quantum capacitor. Physical Review B, 2007, 75, .	1.1	58
82	Response time of a normal-metal/superconductor hybrid system under a step-like pulse bias. Physical Review B, 2007, 75, .	1.1	19
83	Spin-dependent transport in Fe-doped carbon nanotubes. Physical Review B, 2007, 75, .	1.1	72
84	Models for the Structure and Electronic Transmission of Carbon Nanotubes Covalently Linked by a Molecular Bridge via Amide Couplings. Journal of Physical Chemistry C, 2007, 111, 3700-3704.	1.5	25
85	Persistent Spin Current in a Mesoscopic Hybrid Ring with Spin-Orbit Coupling. Physical Review Letters, 2007, 98, 196801.	2.9	68
86	Multi-photon behaviors of shot noise in a quantum dot system under the perturbation of two microwave fields. European Physical Journal B, 2007, 59, 329-342.	0.6	11
87	Impact of the cap layer on the electronic structures and optical properties of self-assembledInAsâ•GaAsquantum dots. Physical Review B, 2006, 74, .	1.1	30
88	Universal Spin-Hall Conductance Fluctuations in Two Dimensions. Physical Review Letters, 2006, 97, 066603.	2.9	64
89	Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory. Physical Review B, 2006, 74, .	1.1	161
90	Conservation of spin current: Model including self-consistent spin-spin interaction. Physical Review B, 2006, 74, .	1.1	16

#	Article	IF	CITATIONS
91	Shot noise in a superconducting hybrid molecular device. Nanotechnology, 2006, 17, 489-495.	1.3	10
92	Generating spin current using an ac magnetic field. Physical Review B, 2006, 73, .	1.1	8
93	Charge and spin currents tunnelling through a toroidal carbon nanotube side-coupled with a quantum dot. European Physical Journal B, 2006, 51, 425-433.	0.6	7
94	Carbon nanotube-based quantum spin pump. New Journal of Physics, 2006, 8, 73-73.	1.2	5
95	Nature of spin Hall effect in a finite ballistic two-dimensional system with Rashba and Dresselhaus spin-orbit interaction. Physical Review B, 2006, 73, .	1.1	29
96	Photon-assisted shot noise in the mesoscopic system with a toroidal carbon nanotube coupled to normal-metal leads perturbed by ac fields. Physical Review B, 2006, 74, .	1.1	20
97	Quantum transport through C48N12 based atomic devices. Journal of Chemical Physics, 2006, 124, 114702.	1.2	4
98	NONLINEAR THERMOELECTRIC TRANSPORT THROUGH A DOUBLE BARRIER STRUCTURE. Modern Physics Letters B, 2006, 20, 215-223.	1.0	3
99	The thermoelectric transport through carbon chains. Carbon, 2005, 43, 2786-2791.	5.4	8
100	Mesoscopic spin-flip transport through a quantum dot system responded by ac magnetic fields. European Physical Journal B, 2005, 44, 93-100.	0.6	16
101	Giant enhancement of dynamic conductance in molecular devices. Physical Review B, 2005, 72, .	1.1	24
102	Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density. Journal of Applied Physics, 2005, 98, 084305.	1.1	25
103	Spin Current due to Spinlike Andreev Reflection. Physical Review Letters, 2005, 95, 086608.	2.9	22
104	Effect of thermal fluctuations of twist angles on charge transport in DNA: A model calculation. Physical Review B, 2005, 72, .	1.1	25
105	Negative electrochemical capacitance for a double-quantum-dot device. Journal of Applied Physics, 2005, 98, 086103.	1.1	5
106	Time-dependent quantum transport: Direct analysis in the time domain. Physical Review B, 2005, 71, .	1.1	98
107	Oscillatory thermopower of carbon chains: First-principles calculations. Physical Review B, 2005, 71, .	1.1	38
108	Conductance fluctuations and higher order moments of a disordered carbon nanotube. Physical Review B, 2005, 72, .	1.1	11

#	Article	IF	CITATIONS
109	Quantum transport theory for nanostructures with Rashba spin-orbital interaction. Physical Review B, 2005, 71 , .	1.1	295
110	Shot noise of spin current. Physical Review B, 2004, 69, .	1.1	28
111	Thermoelectric transport properties in atomic scale conductors. Journal of Chemical Physics, 2004, 121, 8537.	1.2	37
112	Dynamical conductance through InAs/GaSb/InAs and InAs/AlSb/GaSb/AlSb/InAs structures. Physical Review B, 2004, 69, .	1.1	3
113	Capacitance, induced charges, and bound states of biased carbon nanotube systems. Physical Review B, 2004, 69, .	1.1	30
114	Spin-valve effect in a carbon atomic wire. Physical Review B, 2004, 70, .	1.1	27
115	Spin current carried by magnons. Physical Review B, 2004, 69, .	1.1	24
116	Spin-current-induced electric field. Physical Review B, 2004, 69, .	1.1	58
117	Spin pump in the presence of a superconducting lead. Physical Review B, 2004, 70, .	1.1	22
118	Electronic transport through single-wall nicked carbon nanotubes. Physical Review B, 2004, 69, .	1.1	8
119	ac transport through a resonant level between ferromagnetic electrodes. Physical Review B, 2004, 70,	1.1	18
120	Heat current and spin current through a carbon-nanotube-based molecular quantum pump. Physical Review B, 2004, 70, .	1.1	18
121	Andreev Scattering in Semiconductor–Superconductor Junctions Containing a Finite Width Semiconductor Region Applied by Magnetic Fields. Journal of the Physical Society of Japan, 2004, 73, 1303-1312.	0.7	2
122	Mesoscopic transport through toroidal carbon nanotubes threaded with a THz magnetic flux. European Physical Journal B, 2004, 40, 93-102.	0.6	6
123	Coherent mesoscopic transport through a quantum-dot embedded carbon nanotube ring threaded with magnetic flux. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 323, 285-289.	0.9	6
124	Photon-assisted mesoscopic transport through a toroidal carbon nanotube coupled to normal metal leads. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 325, 407-414.	0.9	4
125	A spin injector. Applied Physics Letters, 2004, 85, 2553-2555.	1.5	31
126	Magnetoconductance oscillations in semiconductor-superconductor junctions with a laterally isolating barrier layer inside semiconductor region. European Physical Journal B, 2003, 34, 237-246.	0.6	2

#	Article	IF	CITATIONS
127	Statistical correlation for a three-terminal normal-metal–superconductor– superconductor hybrid system. Physical Review B, 2003, 67, .	1.1	7
128	First-principles investigation of carbon nanotube capacitance. Physical Review B, 2003, 67, .	1.1	17
129	Correlated two-electron transport: A principle for a charge pump. Physical Review B, 2003, 68, .	1.1	7
130	Quantum spin field effect transistor. Physical Review B, 2003, 67, .	1.1	166
131	Current plateaus of nonadiabatic charge pump:â€,â€,Multiphoton assisted processes. Physical Review B, 2003, 68, .	1.1	54
132	Gate-controllable spin battery. Applied Physics Letters, 2003, 83, 1397-1399.	1.5	79
133	Parametric quantum spin pump. Physical Review B, 2003, 68, .	1.1	34
134	A Spin Cell for Spin Current. Physical Review Letters, 2003, 90, 258301.	2.9	123
135	Optimal quantum pump in the presence of a superconducting lead. Physical Review B, 2002, 66, .	1.1	20
136	Parametric pumping at finite frequency. Physical Review B, 2002, 65, .	1.1	96
137	Carbon-nanotube-based quantum pump in the presence of a superconducting lead. Physical Review B, 2002, 66, .	1.1	20
138	Quantization of adiabatic pumped charge in the presence of superconducting lead. Physical Review B, 2002, 65, .	1.1	30
139	Heat current in a parametric quantum pump. Physical Review B, 2002, 66, .	1.1	44
140	Spin-polarized parametric pumping: Theory and numerical results. Physical Review B, 2002, 66, .	1.1	25
141	Hamiltonian approach to the ac Josephson effect in superconducting-normal hybrid systems. Physical Review B, 2002, 65, .	1.1	32
142	Parametric electron pumping through a quantum dot in the Kondo regime. Physical Review B, 2002, 65,	1.1	14
143	Spin-polarized transport through a quantum dot:â€,â€,Anderson model with on-site Coulomb repulsion. Physical Review B, 2002, 65, .	1.1	174
144	Thermal conductance for single wall carbon nanotubes. European Physical Journal B, 2002, 25, 233-238.	0.6	14

#	Article	IF	CITATIONS
145	Carbon nanotubes in the Coulomb blockade regime. Physical Review B, 2001, 63, .	1.1	13
146	Ab initiomodeling of open systems: Charge transfer, electron conduction, and molecular switching of aC60device. Physical Review B, 2001, 63, .	1.1	665
147	Rigorous electromagnetic analysis of a microcylindrical axilens with long focal depth and high transverse resolution. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 1465.	0.8	25
148	Ab initiomodeling of quantum transport properties of molecular electronic devices. Physical Review B, 2001, 63, .	1.1	2,731
149	Nonlinear Spin Polarized Transport through a Ferromagnetic-Nonmagnetic-Ferromagnetic Junction. Journal of the Physical Society of Japan, 2001, 70, 2645-2651.	0.7	75
150	Carbon nanotube parametric electron pump: A molecular device. Physical Review B, 2001, 64, .	1.1	36
151	Resonant transmission through finite-sized carbon nanotubes. Physical Review B, 2001, 63, .	1.1	80
152	Dynamic conductance of mesoscopic waveguides. Journal of Applied Physics, 2001, 89, 1777.	1.1	5
153	Resonant Andreev reflections in superconductor–carbon-nanotube devices. Physical Review B, 2001, 63, .	1.1	38
154	Nonlinear transport theory for hybrid normal-superconducting devices. Physical Review B, 2001, 64, .	1.1	24
155	Zeeman-split mesoscopic transport through a normal-metal–quantum-dot–superconductor system with ac response. Physical Review B, 2001, 64, .	1.1	36
156	Enhancement of parametric pumping due to Andreev reflection. Applied Physics Letters, 2001, 79, 3977-3979.	1.5	43
157	Theoretical study for a quantum-dot molecule irradiated by a microwave field. Physical Review B, 2000, 61, 12643-12646.	1.1	25
158	Emittance fluctuations in a mesoscopic diffusive conductor. Physical Review B, 2000, 62, 10774-10778.	1.1	7
159	ac response of an atomic tunnel junction. Physical Review B, 2000, 61, 13121-13126.	1.1	17
160	Electron transport through a mesoscopic hybrid multiterminal resonant-tunneling system. Physical Review B, 2000, 61, 4754-4761.	1.1	47
161	Control of the supercurrent in a mesoscopic four-terminal Josephson junction. Physical Review B, 2000, 62, 648-660.	1.1	41
162	Carbon Nanotube Based Magnetic Tunnel Junctions. Physical Review Letters, 2000, 84, 2682-2685.	2.9	153

#	Article	IF	Citations
163	Resonance-assisted parametric electron pump. Physical Review B, 2000, 62, 9947-9950.	1.1	76
164	Theory of excess noise of a quantum dot in the presence of a microwave field. Physical Review B, 2000, 61, 13032-13036.	1.1	28
165	THEORETICAL INVESTIGATIONS OF QUANTUM TRANSPORT THROUGH CARBON NANOTUBE DEVICES. Surface Review and Letters, 2000, 07, 637-642.	0.5	4
166	Dynamic Conductance of Carbon Nanotubes. Physical Review Letters, 2000, 84, 2921-2924.	2.9	67
167	Dynamic and nonlinear magnetoconductance: Numerical analysis in two dimensions. Physical Review B, 1999, 59, 538-545.	1.1	15
168	Photon-assisted Andreev tunneling through a mesoscopic hybrid system. Physical Review B, 1999, 59, 13126-13138.	1.1	68
169	Weakly nonlinear ac response: Theory and application. Physical Review B, 1999, 59, 7575-7578.	1.1	44
170	Nonlinear I–V characteristics of a mesoscopic conductor. Journal of Applied Physics, 1999, 86, 5094-5102.	1.1	50
171	Electrochemical capacitance of a leaky nanocapacitor. Physical Review B, 1999, 60, 16730-16740.	1.1	24
172	Resonant Andreev reflection in a normal-metal–quantum-dot–superconductor system. Physical Review B, 1999, 59, 3831-3840.	1.1	178
173	Breaking of phase rigidity by a time-varying field for a two-terminal modified Aharonov-Bohm ring. Physical Review B, 1999, 60, R13981-R13984.	1.1	12
174	Nonlinear voltage dependence of shot noise. Physical Review B, 1999, 60, 16900-16905.	1.1	31
175	TIME-DEPENDENT CALCULATION FOR THE TRANSMISSION COEFFICIENT OF TWO-DIMENSIONAL QUANTUM WIRE STRUCTURES IN THE PRESENCE OF MAGNETIC FIELD. International Journal of Modern Physics B, 1999, 13, 895-902.	1.0	1
176	Coherent resonant transport through a mesoscopic system with quantum ac microwave field. European Physical Journal B, 1999, 9, 513-524.	0.6	13
177	Magnetoconductance in quantum waveguides with inhomogeneous magnetic fields. Journal of Applied Physics, 1999, 85, 1591-1596.	1.1	3
178	Current Partition: A Nonequilibrium Green's Function Approach. Physical Review Letters, 1999, 82, 398-401.	2.9	171
179	Effects of interchain coupling on quantum fluctuations in polymers. Synthetic Metals, 1999, 101, 511-512.	2.1	0
180	Nonlinear quantum capacitance. Applied Physics Letters, 1999, 74, 2887-2889.	1.5	30

#	Article	IF	CITATIONS
181	Polarized pseudonondiffracting beams generated by polarization-selective diffractive phase elements. Applied Optics, 1999, 38, 3089.	2.1	1
182	Lack of quenching for the resonant transmission through an inhomogeneously oscillating quantum well. Physical Review B, 1998, 58, 2008-2012.	1.1	8
183	Parity anomaly of bound states and optical properties in semiconductor superlattices with structural defects. Physical Review B, 1998, 58, 4629-4635.	1.1	25
184	Energy Spectrum and Persistent Currents in Finite-Width Mesoscopic Ring with Radial Potential Barrier Threading a Magnetic Flux Through its Hole. International Journal of Modern Physics B, 1998, 12, 663-672.	1.0	1
185	Full Band Gap in Fcc and Bcc Photonic Band Gaps Structure: Non–Spherical Atom. Journal of the Physical Society of Japan, 1998, 67, 3288-3291.	0.7	37
186	Transport through a single-atom junction. Journal of Physics Condensed Matter, 1998, 10, 2663-2671.	0.7	5
187	Second-order non-linear conductance of a two-dimensional mesoscopic conductor. Journal of Physics Condensed Matter, 1998, 10, 5335-5350.	0.7	5
188	Creation of partial band gaps in anisotropic photonic-band-gap structures. Physical Review B, 1998, 58, 3721-3729.	1.1	202
189	Statistical analysis of magnetic-field spectra. Physical Review B, 1998, 58, 13094-13098.	1.1	0
190	Scattering matrix theory for nonlinear transport. Physical Review B, 1998, 57, 9108-9113.	1.1	39
191	Structural and transport properties of aluminum atomic wires. Physical Review B, 1998, 58, 13138-13145.	1.1	37
192	Capacitance of Atomic Junctions. Physical Review Letters, 1998, 80, 4277-4280.	2.9	66
193	Photon sidebands of the ground state and the excited state of a quantum dot: A nonequilibrium Green-function approach. Physical Review B, 1998, 58, 13007-13014.	1.1	53
194	Self-consistent analysis of a quantum capacitor. Physical Review B, 1998, 58, 15393-15396.	1.1	3
195	Oscillatory Magneto-Conductance in Quantum Waveguides with Lateral Multi-Barrier Structures. International Journal of Modern Physics B, 1998, 12, 653-661.	1.0	3
196	Thermal Properties and Fluctuations of Non-Interacting " M -ons― Communications in Theoretical Physics, 1997, 27, 153-156.	1.1	0
197	Current conservation in two-dimensional ac transport. Physical Review B, 1997, 55, 9770-9774.	1.1	21
198	Weakly nonlinear quantum transport: An exactly solvable model. Physical Review B, 1997, 55, 9763-9769.	1.1	9

#	Article	IF	CITATIONS
199	Low-frequency quantum transport in a three-probe mesoscopic conductor. Physical Review B, 1997, 56, 12462-12468.	1.1	9
200	Quantized conductance of Si atomic wires. Physical Review B, 1997, 56, R4351-R4354.	1.1	66
201	Magnetocapacitance of a three-probe mesoscopic capacitor. Physical Review B, 1997, 56, 9657-9661.	1.1	4
202	Dynamic admittance of atomic wires. Physical Review B, 1997, 55, R13393-R13396.	1.1	20
203	Tunneling transmission in two quantum wires coupled by a magnetically defined barrier. Journal of Applied Physics, 1997, 82, 6083-6088.	1.1	11
204	Quantum transport through atomic wires. Applied Physics Letters, 1997, 71, 419-421.	1.5	57
205	Electronic states and magnetotransport in quantum waveguides with nonuniform magnetic fields. Physical Review B, 1997, 56, 13434-13441.	1.1	18
206	Low frequency and weakly non-linear conductance of a double-barrier structure: an exact solution. Zeitschrift Fýr Physik B-Condensed Matter, 1997, 104, 463-467.	1.1	16
207	Structures of energy spectrum and persistent currents in mesoscopic rings with radial potential barrier in magnetic field. Zeitschrift FÃ $\frac{1}{4}$ r Physik B-Condensed Matter, 1997, 104, 509-512.	1.1	0
208	Frequency-dependent admittance of a two-dimensional quantum wire. Physical Review B, 1996, 54, R11090-R11093.	1.1	11
209	Resonance states of open quantum dots. Physical Review B, 1996, 53, 16408-16413.	1.1	20
210	The bond bending model on triangular lattice and square lattice. Zeitschrift FÃ $^1\!\!/\!\!4$ r Physik B-Condensed Matter, 1996, 101, 141-144.	1.1	2
211	Persistent current in mesoscopic semiconductor rings: a two-band model. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 214, 84-88.	0.9	1
212	Quantum fluctuations and lattice dimerization in coupled polymer chains. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 222, 415-418.	0.9	3
213	Influence of ferromagnetic spin waves on persistent currents in one-dimensional mesoscopic rings. Physical Review B, 1996, 53, 16372-16378.	1.1	3
214	Efficient method for calculating the transmission coefficient of twoâ€dimensional quantum wire structures. Journal of Applied Physics, 1996, 80, 4208-4210.	1.1	6
215	Central-force model with the next-nearest-neighbor interaction: A series approach. Physical Review B, 1996, 53, 201-205.	1.1	2
216	Two-atom superradiance in the photonic band gap. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 204, 54-58.	0.9	2

#	Article	IF	CITATIONS
217	Many-electron effects on ballistic transport. Physical Review B, 1995, 52, 2738-2746.	1.1	30
218	Aharonov-Bohm effect induced by mutual inductance for an array of mesoscopic rings. Physical Review B, 1995, 52, 14829-14833.	1.1	9
219	Series approach to the bond bending model. Journal of Physics A, 1995, 28, L415-L419.	1.6	1
220	Tunnelling through quantum-dot systems: a study of the magnetoconductance fluctuations. Journal of Physics Condensed Matter, 1994, 6, L143-L148.	0.7	4
221	Total-energy calculations using a gradient-expanded kinetic-energy functional. Physical Review B, 1994, 50, 11175-11178.	1.1	31
222	Magnetoconductance of a stadium-shaped quantum dot: A finite-element-method approach. Physical Review B, 1994, 49, 1928-1934.	1.1	54
223	Investigation of timeâ€dependent resonant interband tunneling. Journal of Applied Physics, 1994, 75, 2724-2726.	1.1	6
224	Quasibound states in twoâ€dimensional quantum wires. Applied Physics Letters, 1994, 65, 1793-1795.	1.5	57
225	Manyâ€electron effects on transport through twoâ€dimensional quantum structures. Journal of Applied Physics, 1994, 75, 2721-2723.	1.1	13
226	Effects of inelastic processes on the transmission in a coupled-quantum-wire system. Physical Review B, 1993, 47, 4348-4355.	1.1	14
227	Critical slowing down of the two-dimensional kinetic Ising model with Glauber dynamics. Physical Review B, 1993, 47, 869-871.	1.1	20
228	Universal conductivity in the two-dimensional boson Hubbard model. Physical Review B, 1993, 48, 9628-9635.	1.1	50
229	Time-dependent transport in two-dimensional quantum-wire structures. Physical Review B, 1993, 48, 12072-12075.	1.1	14
230	Ballistic-electron transport through a coupled-quantum-wire system. Physical Review B, 1992, 46, 2420-2427.	1.1	33
231	Resonant tunneling through a bend in a quantum wire. Applied Physics Letters, 1992, 60, 654-656.	1.5	27
232	Thermodynamic properties of the two-dimensional spin-1/2 Heisenberg antiferromagnet at finite temperature: A finite-cluster-expansion approach. Physical Review B, 1992, 45, 2282-2284.	1.1	5
233	Series approach to the randomly diluted elastic network. Physical Review B, 1992, 45, 7084-7093.	1.1	6
234	Electron waveguide coupler: A fourâ€terminal device. Applied Physics Letters, 1991, 59, 3075-3077.	1.5	36

#	Article	lF	CITATIONS
235	Quantum optics of localized light in a photonic band gap. Physical Review B, 1991, 43, 12772-12789.	1.1	339
236	Series approach to the diamagnetism of a disordered granular superconductor network. Journal of Physics A, 1991, 24, 5411-5413.	1.6	3
237	The extension of self-avoiding random walk series in two dimensions. Journal of Physics A, 1991, 24, 3107-3109.	1.6	30
238	Two-dimensional spin-1/2 Heisenberg antiferromagnet at finite temperature. Physical Review B, 1991, 44, 2396-2398.	1.1	9
239	The area of the clusters with no free ends. European Physical Journal B, 1990, 81, 113-114.	0.6	0
240	The projected area of the three-dimensional self-avoiding polygons in a plane. Journal of Physics A, 1990, 23, 4589-4591.	1.6	1
241	Application of the thermodynamic cycle perturbation method to systems with nonadditive potentials. Journal of Chemical Physics, 1990, 93, 2762-2768.	1.2	8
242	Quantum electrodynamics near a photonic band gap: Photon bound states and dressed atoms. Physical Review Letters, 1990, 64, 2418-2421.	2.9	681
243	Elastic property of the self-avoiding random walk. Journal of Physics A, 1989, 22, L891-L894.	1.6	0
244	Central-force models which exhibit a splay-rigid phase. Physical Review B, 1989, 40, 7256-7264.	1.1	3
245	Cohn's theorem for elastic networks. Physical Review B, 1989, 40, 7272-7278.	1.1	2
246	The bond-bending model in three dimensions. Journal of Physics A, 1989, 22, L291-L295.	1.6	25
247	A mean-field theory of the elastic granular disc model in two dimensions. Journal of Physics A, 1989, 22, L401-L406.	1.6	3
248	An algorithm for enumerating rigid clusters. Journal of Physics A, 1989, 22, L895-L898.	1.6	1
249	The critical behaviour of clusters with no free ends. Journal of Physics A, 1989, 22, L1015-L1017.	1.6	1
250	A new algorithm to enumerate the self-avoiding random walk. Journal of Physics A, 1989, 22, L969-L971.	1.6	4
251	Rigid animals in three dimensions. Journal of Physics A, 1989, 22, L791-L793.	1.6	0
252	Diamagnetism of percolative granular superconductors and diluted Josephson arrays. Physical Review B, 1988, 38, 2533-2542.	1.1	5

#	Article	IF	CITATIONS
253	Splay Rigidity in the Anisotropic Superelastic Network. Europhysics Letters, 1988, 6, 157-161.	0.7	8
254	Bond-diluted rigid animals for central force model. Journal of Physics A, 1988, 21, L353-L356.	1.6	7
255	Resistivity and Elasticity Exponents for Lattice Animals. Europhysics Letters, 1988, 6, 615-619.	0.7	6
256	Wang and Harris Respond. Physical Review Letters, 1986, 56, 1426-1426.	2.9	6
257	Bond Orientational Order in the Randomly Diluted Elastic Network. Physical Review Letters, 1985, 55, 2459-2462.	2.9	26