
## **Thu-Trang Do**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/455926/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Molecular Engineering Using an Anthanthrone Dye for Lowâ€Cost Hole Transport Materials: A Strategy<br>for Dopantâ€Free, Highâ€Efficiency, and Stable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8,<br>1703007.   | 19.5 | 154       |
| 2  | A Highly Sensitive Diketopyrrolopyrroleâ€Based Ambipolar Transistor for Selective Detection and Discrimination of Xylene Isomers. Advanced Materials, 2016, 28, 4012-4018.                                                     | 21.0 | 129       |
| 3  | One step facile synthesis of a novel anthanthrone dye-based, dopant-free hole transporting material for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 3699-3708.                     | 5.5  | 61        |
| 4  | Molecular Engineering Strategy for High Efficiency Fullerene-Free Organic Solar Cells Using<br>Conjugated 1,8-Naphthalimide and Fluorenone Building Blocks. ACS Applied Materials & Interfaces,<br>2017, 9, 16967-16976.       | 8.0  | 56        |
| 5  | Effect of thermal annealing Super Yellow emissive layer on efficiency of OLEDs. Scientific Reports, 2017, 7, 40805.                                                                                                            | 3.3  | 54        |
| 6  | Effect of Polyelectrolyte Electron Collection Layer Counteranion on the Properties of Polymer Solar Cells. ACS Applied Materials & amp; Interfaces, 2015, 7, 3335-3341.                                                        | 8.0  | 43        |
| 7  | Naphthalimide end capped anthraquinone based solution-processable n-channel organic<br>semiconductors: effect of alkyl chain engineering on charge transport. Journal of Materials<br>Chemistry C, 2018, 6, 3774-3786.         | 5.5  | 30        |
| 8  | Effect of the number of thiophene rings in polymers with 2,1,3-benzooxadiazole core on the photovoltaic properties. Organic Electronics, 2013, 14, 2673-2681.                                                                  | 2.6  | 29        |
| 9  | Synthesis and characterization of conjugated oligoelectrolytes based on fluorene and carbazole derivative and application of polymer solar cell as a cathode buffer layer. Macromolecular Research, 2015, 23, 367-376.         | 2.4  | 21        |
| 10 | Organic Transistor Based on Cyclopentadithiopheneâ€Benzothiadiazole Donor–Acceptor Copolymer<br>for the Detection and Discrimination between Multiple Structural Isomers. Advanced Functional<br>Materials, 2019, 29, 1808188. | 14.9 | 20        |
| 11 | 9-Fluorenone and 9,10-anthraquinone potential fused aromatic building blocks to synthesize electron acceptors for organic solar cells. New Journal of Chemistry, 2017, 41, 2899-2909.                                          | 2.8  | 19        |
| 12 | Investigation of the effect of conjugated oligoelectrolyte as a cathode buffer layer on the photovoltaic properties. Synthetic Metals, 2014, 198, 122-130.                                                                     | 3.9  | 18        |
| 13 | Experimental and modeling study of low-voltage field-effect transistors fabricated with molecularly aligned copolymer floating films. Flexible and Printed Electronics, 2018, 3, 015006.                                       | 2.7  | 15        |
| 14 | A triphenylamine substituted quinacridone derivative for solution processed organic light emitting<br>diodes. Materials Chemistry and Physics, 2018, 206, 56-63.                                                               | 4.0  | 15        |
| 15 | Naphthalimide end-capped diphenylacetylene: a versatile organic semiconductor for blue light<br>emitting diodes and a donor or an acceptor for solar cells. New Journal of Chemistry, 2019, 43,<br>9243-9254.                  | 2.8  | 15        |
| 16 | Investigation of the property change of polymer solar cells by changing counter anions in polyviologen as a cathode buffer layer. Macromolecular Research, 2015, 23, 177-182.                                                  | 2.4  | 11        |
| 17 | Highly Efficient Microscopic Charge Transport within Crystalline Domains in a Furanâ€Flanked<br>Diketopyrrolopyrroleâ€Based Conjugated Copolymer. Advanced Functional Materials, 2020, 30, 2000389.                            | 14.9 | 11        |
| 18 | Control of Geminate Recombination by the Material Composition and Processing Conditions in Novel<br>Polymer: Nonfullerene Acceptor Photovoltaic Devices. Journal of Physical Chemistry A, 2018, 122,<br>1253-1260.             | 2.5  | 10        |

THU-TRANG DO

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Phthalimide and naphthalimide: Effect of end-capping groups on molecular properties and photovoltaic performance of 9-fluorenone based acceptors for organic solar cells. Organic Electronics, 2018, 62, 12-20.                                                 | 2.6  | 10        |
| 20 | Indenofluorene-based-copolymers: Influence of electron-deficient benzothiadiazole (BT) and benzooxadiazole (BO) moieties on light emitting devices. Organic Electronics, 2019, 70, 14-24.                                                                       | 2.6  | 10        |
| 21 | Electrode and dielectric layer interface device engineering study using furan flanked<br>diketopyrrolopyrrole–dithienothiophene polymer based organic transistors. Scientific Reports, 2020,<br>10, 19989.                                                      | 3.3  | 9         |
| 22 | Selfâ€assembled Poly(4â€vinylpyridine) As an Interfacial Layer for Polymer Solar Cells. Bulletin of the<br>Korean Chemical Society, 2016, 37, 13-18.                                                                                                            | 1.9  | 8         |
| 23 | Effect of Self-Assembled Monolayer Treated ZnO on the Photovoltaic Properties of Inverted Polymer<br>Solar Cells. Bulletin of the Korean Chemical Society, 2014, 35, 569-574.                                                                                   | 1.9  | 8         |
| 24 | Enhanced efficiency in polymer solar cells by incorporation of phenothiazine-based conjugated polymer electrolytes. Organic Electronics, 2015, 16, 18-25.                                                                                                       | 2.6  | 5         |
| 25 | Reduced Threshold Voltages and Enhanced Mobilities in Diketopyrrolopyrrole–Dithienothiophene<br>Polymerâ€Based Organic Transistor by Interface Engineering. Physica Status Solidi (A) Applications and<br>Materials Science, 2020, 217, 2000097.                | 1.8  | 5         |
| 26 | Pyrrolo[3,2-b]pyrrole-1,4-dione (IsoDPP) End Capped with Napthalimide or Phthalimide: Novel Small<br>Molecular Acceptors for Organic Solar Cells. Molecules, 2020, 25, 4700.                                                                                    | 3.8  | 5         |
| 27 | Synthesis and Characterization of ï€-Conjugated Polymers Based on 2-arylbenzimidazole and<br>4,7-di-thiophene-2-yl-4,5,6,7-tetrahydro-benzo[1,2,5]thiadiazole. Molecular Crystals and Liquid Crystals,<br>2013, 581, 31-37.                                     | 0.9  | 3         |
| 28 | Vinylene and benzo[ <i>c</i> ][1,2,5]thiadiazole: effect of the π-spacer unit on the properties of<br>bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing polymers for n-channel organic field-effect<br>transistors. RSC Advances, 2018, 8, 38919-38928. | 3.6  | 2         |
| 29 | Synthesis and Characterization of ï€-Conjugated Polymer Based on Phthalimide Derivative and its<br>Application for Polymer Solar Cells. Porrime, 2013, 37, 694-701.                                                                                             | 0.2  | 2         |
| 30 | Nonâ€Fullerene Acceptorâ€Based Nanomorphology Enhancement for Efficient Ternary Organic Solar<br>Cells. Physica Status Solidi (A) Applications and Materials Science, 0, , .                                                                                    | 1.8  | 2         |
| 31 | Effect of Phthalimide in 2,1,3-Benzooxadiazole Based Copolymer on the Performances of Solar Cells.<br>Molecular Crystals and Liquid Crystals, 2014, 598, 120-128.                                                                                               | 0.9  | 1         |
| 32 | Single and dual-gate organic field-effect transistors based on<br>diketopyrrolopyrrole-diethienothiophene polymers: performance modulation via dielectric<br>interfaces. Materials Research Express, 2021, 8, 096301.                                           | 1.6  | 1         |
| 33 | Sensors: A Highly Sensitive Diketopyrrolopyrroleâ€Based Ambipolar Transistor for Selective Detection<br>and Discrimination of Xylene Isomers (Adv. Mater. 21/2016). Advanced Materials, 2016, 28, 4163-4163.                                                    | 21.0 | 0         |
| 34 | Conjugated 1,8-Naphthalimide Based Solution Processable n-Type Semiconductors for Organic Electronics. , 0, , .                                                                                                                                                 |      | 0         |