Nelsi Zaccheroni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4558441/publications.pdf

Version: 2024-02-01

137 papers 7,424 citations

44069 48 h-index 83 g-index

147 all docs

147 docs citations

147 times ranked

8426 citing authors

#	Article	IF	Citations
1	Luminescent chemosensors for transition metal ions. Coordination Chemistry Reviews, 2000, 205, 59-83.	18.8	804
2	An Effective Fluorescent Chemosensor for Mercury Ions. Journal of the American Chemical Society, 2000, 122, 6769-6770.	13.7	302
3	8-Hydroxyquinoline Derivatives as Fluorescent Sensors for Magnesium in Living Cells. Journal of the American Chemical Society, 2006, 128, 344-350.	13.7	273
4	Dye-doped silica nanoparticles as luminescent organized systems for nanomedicine. Chemical Society Reviews, 2014, 43, 4243-4268.	38.1	242
5	Luminescent Silica Nanoparticles: Extending the Frontiers of Brightness. Angewandte Chemie - International Edition, 2011, 50, 4056-4066.	13.8	241
6	Luminescent Lanthanide Complexes of a Bis-bipyridine-phosphine-oxide Ligand as Tools for Anion Detection. Journal of the American Chemical Society, 2002, 124, 7779-7788.	13.7	193
7	Imaging agents based on lanthanide doped nanoparticles. Chemical Society Reviews, 2015, 44, 4922-4952.	38.1	181
8	Recent developments in transition metal ion detection by luminescent chemosensors. Coordination Chemistry Reviews, 2000, 208, 17-32.	18.8	164
9	A Luminescent Anion Sensor Based on a Europium Hybrid Complex. Journal of the American Chemical Society, 2001, 123, 12694-12695.	13.7	140
10	A Selective, Nontoxic, OFF–ON Fluorescent Molecular Sensor Based on 8â€Hydroxyquinoline for Probing Cd ²⁺ in Living Cells. Chemistry - A European Journal, 2010, 16, 919-930.	3.3	129
11	Photophysical poperties of Schiff-base metal complexes. New Journal of Chemistry, 2003, 27, 692-697.	2.8	126
12	Enantioselective Fluorescence Sensing of Amino Acids by Modified Cyclodextrins: Role of the Cavity and Sensing Mechanism. Chemistry - A European Journal, 2004, 10, 2749-2758.	3.3	121
13	Kinetics of Place-Exchange Reactions of Thiols on Gold Nanoparticles. Langmuir, 2003, 19, 5172-5174.	3. 5	119
14	Characterization of 5-chloro-8-methoxyquinoline appended diaza-18-crown-6 as a chemosensor for cadmium. Tetrahedron Letters, 2001, 42, 2941-2944.	1.4	113
15	Searching for New Luminescent Sensors: Synthesis and Photophysical Properties of a Tripodal Ligand Incorporating the Dansyl Chromophore and of Its Metal Complexes. European Journal of Inorganic Chemistry, 1999, 1999, 455-460.	2.0	111
16	Fluorescence quenching amplification in silica nanosensors for metal ions. Journal of Materials Chemistry, 2005, 15, 2810.	6.7	111
17	Self-Organizing Coreâ^Shell Nanostructures:  Spontaneous Accumulation of Dye in the Core of Doped Silica Nanoparticles. Journal of the American Chemical Society, 2007, 129, 14251-14256.	13.7	106
18	Highly Sensitive, Anisotropic, and Reversible Stress/Strainâ€Sensors from Mechanochromic Nanofiber Composites. Advanced Materials, 2018, 30, e1802813.	21.0	98

#	Article	IF	CITATIONS
19	Heterosupramolecular Chemistry: Programmed Pseudorotaxane Assembly at the Surface of a Nanocrystal. Angewandte Chemie - International Edition, 1999, 38, 1147-1150.	13.8	96
20	Solvent-Induced Modulation of Collective Photophysical Processes in Fluorescent Silica Nanoparticles. Journal of the American Chemical Society, 2002, 124, 13540-13546.	13.7	92
21	Origins of â€~on–off' fluorescent behavior of 8-hydroxyquinoline containing chemosensors. Tetrahedron, 2004, 60, 11139-11144.	1.9	90
22	A fluorescent sensor for magnesium ions. Tetrahedron Letters, 1998, 39, 5451-5454.	1.4	88
23	Temperatureâ€Dependent Fluorescence of Cu ₅ Metal Clusters: A Molecular Thermometer. Angewandte Chemie - International Edition, 2012, 51, 9662-9665.	13.8	87
24	Heterosupramolecular Chemistry:Â Recognition Initiated and Inhibited Silver Nanocrystal Aggregation by Pseudorotaxane Assembly. Journal of the American Chemical Society, 2000, 122, 6252-6257.	13.7	82
25	Energy Transfer from Silica Coreâ^'Surfactant Shell Nanoparticles to Hosted Molecular Fluorophores. Journal of Physical Chemistry B, 2010, 114, 14605-14613.	2.6	82
26	Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications. Coordination Chemistry Reviews, 2012, 256, 1664-1681.	18.8	82
27	Dynamic Chemical Devices: Modulation of Photophysical Properties by Reversible, Ion-Triggered, and Proton-Fuelled Nanomechanical Shape-Flipping Molecular Motions. Chemistry - A European Journal, 2004, 10, 2953-2959.	3.3	81
28	Prevention of Selfâ€Quenching in Fluorescent Silica Nanoparticles by Efficient Energy Transfer. Angewandte Chemie - International Edition, 2013, 52, 5965-5968.	13.8	80
29	Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. Nanoscale, 2014, 6, 3022-3036.	5. 6	80
30	Energy Transfer in Fluorescent Silica Nanoparticles. Langmuir, 2004, 20, 2989-2991.	3 . 5	79
31	A [Rull(bipy)3]-[1,9-diamino-3,7-diazanonane-4,6-dione] two-component system, as an efficient ON–OFF luminescent chemosensor for Ni2+ and Cu2+ in water, based on an ET (energy transfer) mechanism. Journal of the Chemical Society Dalton Transactions, 1999, , 1381-1386.	1.1	78
32	Synthesis and characterization of β-fused porphyrin-BODIPY® dyads. Tetrahedron, 2004, 60, 1099-1106.	1.9	75
33	Dansylated Polyamines as Fluorescent Sensors for Metal Ions: Photophysical Properties and Stability of Copper(II) Complexes in Solution. Helvetica Chimica Acta, 2001, 84, 690-706.	1.6	72
34	Size Effect on the Fluorescence Properties of Dansyl-Doped Silica Nanoparticles. Langmuir, 2006, 22, 5877-5881.	3 . 5	72
35	Enhanced Sensitized NIR Luminescence from Gold Nanoparticles via Energy Transfer from Surface-Bound Fluorophores. Journal of the American Chemical Society, 2007, 129, 2418-2419.	13.7	72
36	Induced Fit Interanion Discrimination by Binding-Induced Excimer Formation. Journal of the American Chemical Society, 2008, 130, 4105-4113.	13.7	70

#	Article	IF	CITATIONS
37	Luminescent Silica Nanoparticles for Cancer Diagnosis. Current Medicinal Chemistry, 2013, 20, 2195-2211.	2.4	70
38	Multimodal Use of New Coumarinâ€Based Fluorescent Chemosensors: Towards Highly Selective Optical Sensors for Hg ²⁺ Probing. Chemistry - A European Journal, 2013, 19, 14639-14653.	3.3	66
39	Energy Transfer from a Fluorescent Hydrogel to a Hosted Fluorophore. Langmuir, 2006, 22, 2299-2303.	3.5	62
40	The Erratic Emission of Pyrene on Gold Nanoparticles. ACS Nano, 2008, 2, 77-84.	14.6	60
41	Amplified Fluorescence Response of Chemosensors Grafted onto Silica Nanoparticles. Langmuir, 2008, 24, 8387-8392.	3.5	58
42	Synthesis and Photophysical Properties of Fluorescent Derivatives of Methylmercury. Organometallics, 1996, 15, 2415-2417.	2.3	57
43	Multicolor core/shell silicananoparticles for in vivo and ex vivo imaging. Nanoscale, 2012, 4, 824-830.	5 . 6	55
44	Static quenching upon adduct formation: a treatment without shortcuts and approximations. Chemical Society Reviews, 2021, 50, 8414-8427.	38.1	54
45	A New Family of Luminescent Sensors for Alkaline Earth Metal Ions. Chemistry - A European Journal, 1998, 4, 1090-1094.	3.3	51
46	Synthesis, Electrochemical, and Photophysical Study of Covalently Linked Porphyrin Dimers with Two Different Macrocycles. Inorganic Chemistry, 1998, 37, 2358-2365.	4.0	51
47	Luminescent Chemosensors Based on Silica Nanoparticles. Topics in Current Chemistry, 2010, 300, 93-138.	4.0	50
48	Bioinspired Systems for Metal-Ion Sensing: New Emissive Peptide Probes Based on Benzo[<i>d</i>)]oxazole Derivatives and Their Gold and Silica Nanoparticles. Inorganic Chemistry, 2011, 50, 8834-8849.	4.0	50
49	Near infra-red emitting Ru(<scp>ii</scp>) complexes of tridentate ligands: electrochemical and photophysical consequences of a strong donor ligand with large bite angles. Chemical Science, 2014, 5, 4800-4811.	7.4	49
50	New europium(iii) complexes containing hybrid ligands with hard and soft complexation centres. New Journal of Chemistry, 2003, 27, 134-139.	2.8	48
51	Proper design of silica nanoparticles combines high brightness, lack of cytotoxicity and efficient cell endocytosis. Nanoscale, 2013, 5, 7897.	5.6	47
52	The synthesis of azacrown ethers with quinoline-based sidearms as potential zinc(II) fluorophores. Tetrahedron, 2002, 58, 4809-4815.	1.9	46
53	A new pyridine-based 12-membered macrocycle functionalised with different fluorescent subunits; coordination chemistry towards Cull, Znll, Cdll, Hgll, and Pbll. Dalton Transactions, 2004, , 2771-2779.	3.3	45
54	Coordination chemistry of N-aminopropyl pendant arm derivatives of mixed N/S-, and N/S/O-donor macrocycles, and construction of selective fluorimetric chemosensors for heavy metal ions. Dalton Transactions, 2005, , 2994.	3.3	44

#	Article	IF	Citations
55	Synthesis of a highly Mg2+-selective fluorescent probe and its application to quantifying and imaging total intracellular magnesium. Nature Protocols, 2017, 12, 461-471.	12.0	43
56	A Versatile Strategy for Signal Amplification Based on Core/Shell Silica Nanoparticles. Chemistry - A European Journal, 2011, 17, 13429-13432.	3.3	42
57	"Melting Transition―of a Quantum Dot Solid:  Collective Interactions Influence the Thermally-Induced Orderâ^'Disorder Transition of a Silver Nanocrystal Superlattice. Journal of the American Chemical Society, 1999, 121, 3533-3534.	13.7	41
58	Luminescence signalled enantiomeric recognition of chiral organic ammonium ions by an enantiomerically pure dimethylacridino-18-crown-6 ligand. New Journal of Chemistry, 2000, 24, 781-785.	2.8	41
59	Luminescent chemosensors based on silicananoparticles for the detection of ionic species. New Journal of Chemistry, 2013, 37, 28-34.	2.8	41
60	Near infra-red emission from a mer-Ru(ii) complex: consequences of strong $\dagger f$ -donation from a neutral, flexible ligand with dual binding modes. Chemical Communications, 2014, 50, 6846.	4.1	39
61	Pluronic-Silica (PluS) Nanoparticles Doped with Multiple Dyes Featuring Complete Energy Transfer. Journal of Physical Chemistry C, 2014, 118, 9261-9267.	3.1	37
62	Photophysics of 1,3-alternate calix[4]arene-crowns and of their metal ion complexes: evidence for cation–l€ interactions in solution. New Journal of Chemistry, 2000, 24, 155-158.	2.8	36
63	NIR-fluorescent dye doped silica nanoparticles for (i) in vivo (i) imaging, sensing and theranostic. Methods and Applications in Fluorescence, 2018, 6, 022002.	2.3	36
64	Convenient syntheses and preliminary photophysical properties of novel 8-aminoquinoline appended diaza-18-crown-6 ligands. Tetrahedron, 2001, 57, 7623-7628.	1.9	35
65	Spontaneous deposition of amphiphilic porphyrin films on glassElectronic supplementary information (ESI) available: detailed kinetic studies and procedures, and aggregation studies on 1H2 and 2H2. See http://www.rsc.org/suppdata/nj/b4/b403591g/. New Journal of Chemistry, 2004, 28, 1123.	2.8	34
66	Gold nanoparticles stabilized by modified halloysite nanotubes for catalytic applications. Applied Organometallic Chemistry, 2019, 33, e4665.	3.5	34
67	Targeted dual-color silica nanoparticles provide univocal identification of micrometastases in preclinical models of colorectal cancer. International Journal of Nanomedicine, 2012, 7, 4797.	6.7	31
68	Modulation of the Photophysical Properties of Gold Nanoparticles by Accurate Control of the Surface Coverage. Langmuir, 2004, 20, 7884-7886.	3.5	29
69	Reversible photoswitching of dye-doped core–shell nanoparticles. Chemical Communications, 2011, 47, 10975.	4.1	28
70	A Simple Spectrofluorometric Assay to Measure Total Intracellular Magnesium by a Hydroxyquinoline Derivative. Journal of Fluorescence, 2009, 19, 11-19.	2.5	27
71	6-Azahemiporphycene: A New Member of the Porphyrinoid Family. Inorganic Chemistry, 2009, 48, 10346-10357.	4.0	27
72	A fluorescent ratiometric nanosized system for the determination of PdII in water. Chemical Communications, 2014, 50, 15259-15262.	4.1	27

#	Article	IF	CITATIONS
73	PluS Nanoparticles as a tool to control the metal complex stoichiometry of a new thio-aza macrocyclic chemosensor for $Ag(I)$ and $Hg(II)$ in water. Sensors and Actuators B: Chemical, 2015, 207, 1035-1044.	7.8	27
74	Diaza-18-crown-6 hydroxyquinoline derivatives as flexible tools for the assessment and imaging of total intracellular magnesium. Chemical Science, 2012, 3, 727-734.	7.4	25
75	A convenient synthesis and preliminary photophysical study of novel fluoroionophores: macrocyclic polyamines containing two dansylamidoethyl side arms. Tetrahedron, 2001, 57, 87-91.	1.9	24
76	Phosphine and Phosphonite Complexes of a Ru(II) Porphyrin. 2. Photophysical and Electrochemical Studies. Inorganic Chemistry, 2002, 41, 5269-5275.	4.0	24
77	Quinoline-Containing Calixarene Fluoroionophores: A Combined NMR, Photophysical and Modeling Study. European Journal of Organic Chemistry, 2003, 2003, 1475-1485.	2.4	24
78	Synthesis, photophysical characterisation and metal ion binding properties of new ligands containing anthracene chromophores. Inorganica Chimica Acta, 2004, 357, 4078-4084.	2.4	24
79	A novel fluorescent chemosensor allows the assessment of intracellular total magnesium in small samples. Analyst, The, 2014, 139, 1201-1207.	3.5	24
80	Luminescent Chemosensors Based on Anthracene or Dioxyxanthone Derivatives. Journal of Fluorescence, 2000, 10, 71-71.	2.5	23
81	Solvent-induced switching between two supramolecular assemblies of a guanosine–terthiophene conjugate. Organic and Biomolecular Chemistry, 2010, 8, 774-781.	2.8	23
82	Microwave Assisted Synthesis of a Small Library of SubstitutedN,N′-Bis((8-hydroxy-7-quinolinyl)methyl)-1,10-diaza-18-crown-6 Ethers. Journal of Organic Chemistry, 2010, 75, 6275-6278.	3.2	23
83	Visible and Nearâ€lR Emissions from <i>k</i> ² <i>N</i> ―and <i>k</i> ³ <i>N</i> ×1] Headâ€ŧoâ€ Bonding Strategy. Chemistry - A European Journal, 2017, 23, 6370-6379.	Tais.3	23
84	A Fluorescent Sensor Array Based on Heteroatomic Macrocyclic Fluorophores for the Detection of Polluting Species in Natural Water Samples. Frontiers in Chemistry, 2018, 6, 258.	3.6	23
85	Modulation of Photochemical Properties in Ionâ€Controlled Multicomponent Dynamic Devices. European Journal of Inorganic Chemistry, 2009, 2009, 2621-2628.	2.0	20
86	Oxygen Redox Reaction in Lithium-based Electrolytes: from Salt-in-Solvent to Solvent-in-Salt. Electrochimica Acta, 2017, 245, 296-302.	5.2	19
87	Synthesis, Complexation and Photophysics of $\langle i \rangle 1,3$ -alternate $\langle i \rangle$ Calix [4] are ne-crowns-6 Bearing Fluorophoric Units on the Bridge. Supramolecular Chemistry, 2001, 13, 419-434.	1.2	16
88	Double helical and monomeric Ag(i) and Zn(ii) complexes of 1,2-cyclohexanediyl-bis(iminophenanthridine) ligands. Dalton Transactions, 2003, , 4340.	3.3	16
89	Stabilization of terpyridine covered gold nanoparticles by metal ions complexation. New Journal of Chemistry, 2007, 31, 102-108.	2.8	16
90	Systematic approach in Mg2+ ions analysis with a combination of tailored fluorophore design. Analytica Chimica Acta, 2017, 988, 96-103.	5.4	16

#	Article	IF	CITATIONS
91	New Lanthanide Metalloligands and Their Use for the Assembly of Ln–Ag Bimetallic Coordination Frameworks: Stepwise Modular Synthesis, Structural Characterization, and Optical Properties. Crystal Growth and Design, 2019, 19, 5376-5389.	3.0	16
92	Bright Phosphorescence of All-Organic Chromophores Confined within Water-Soluble Silica Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 29884-29890.	3.1	16
93	Zn ²⁺ /Cd ²⁺ optical discrimination by fluorescent acridine-based <i>bis</i> -macrocylic receptors. Supramolecular Chemistry, 2017, 29, 912-921.	1.2	15
94	Non-enzymatic portable optical sensors for microcystin-LR. Chemical Communications, 2018, 54, 2747-2750.	4.1	15
95	Naturally Inspired Molecules as Multifunctional Agents for Alzheimer's Disease Treatment. Molecules, 2016, 21, 643.	3.8	14
96	Photoluminescenceâ∈Based Techniques for the Detection of Micro―and Nanoplastics. Chemistry - A European Journal, 2021, 27, 17529-17541.	3.3	14
97	Thermoactive Smart Electrospun Nanofibers. Macromolecular Rapid Communications, 2022, 43, e2100694.	3.9	14
98	Tailored SiO2-based coatings for dye doped superparamagnetic nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 410, 111-118.	4.7	13
99	Tandem Dye-Doped Nanoparticles for NIR Imaging via Cerenkov Resonance Energy Transfer. Frontiers in Chemistry, 2020, 8, 71.	3.6	13
100	Chemodivergent Photocatalytic Synthesis of Dihydrofurans and β,γâ€Unsaturated Ketones. Advanced Synthesis and Catalysis, 2021, 363, 3267-3282.	4.3	13
101	Engineered Nanostructured Materials for Ofloxacin Delivery. Frontiers in Chemistry, 2018, 6, 554.	3.6	12
102	Probes and Sensors for Cations. , 2005, , 1-57.		11
103	Micellization properties of cardanol as a renewable co-surfactant. Organic and Biomolecular Chemistry, 2015, 13, 9214-9222.	2.8	11
104	Nitroxides as Building Blocks for Nanoantioxidants. ACS Applied Materials & Samp; Interfaces, 2021, 13, 31996-32004.	8.0	11
105	Oscillating luminescence in the Belousov-Zhabotinsky reaction catalyzed by Ru(bpy)32+. Inorganica Chimica Acta, 1995, 233, 21-23.	2.4	10
106	Absorption and luminescence as a function of pH for carboxylic acid-functionalized Rel tricarbonyls. Journal of Organometallic Chemistry, 2000, 593-594, 267-273.	1.8	10
107	Luminescence of Gold Nanoparticles. , 2007, , 99-128.		10
108	In-Depth Study of the Electronic Properties of NIR-Emissive κ ³ N Terpyridine Rhenium(I) Dicarbonyl Complexes. Inorganic Chemistry, 2021, 60, 70-79.	4.0	10

#	Article	IF	CITATIONS
109	Photophysical Characterisation, Metal Ion Binding and Enantiomeric Recognition of Chiral Ligands Containing Phenazine Fluorophore. Collection of Czechoslovak Chemical Communications, 2004, 69, 885-896.	1.0	10
110	Characterization of titanium dioxide nanoparticles imprinted for tyrosine by flow field-flow fractionation and spectrofluorimetric analysis. Inorganica Chimica Acta, 2007, 360, 1063-1071.	2.4	8
111	Dualâ€Mode, Anisotropyâ€Encoded, Ratiometric Fluorescent Nanosensors: Towards Multiplexed Detection. Chemistry - A European Journal, 2018, 24, 16743-16746.	3.3	8
112	Synthesis and characterization of a reconstituted myoglobin-chlorin e6 adduct for theranostic applications. Journal of Porphyrins and Phthalocyanines, 2020, 24, 887-893.	0.8	8
113	Metal ion binding of photoactive poly-(arylene ethynylene) co-polymers. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 198, 237-241.	3.9	7
114	Energy Transfer in Silica Nanoparticles: An Essential Tool for the Amplification of the Fluorescence Signal. Reviews in Fluorescence, 2010, , 119-137.	0.5	7
115	Expanding the targets of the diaza-18-crown-6 hydroxyquinoline derivatives family to Zn(II) ions for intracellular sensing. Supramolecular Chemistry, 2013, 25, 7-15.	1.2	7
116	Mapping heterogeneous polarity in multicompartment nanoparticles. Scientific Reports, 2018, 8, 17095.	3.3	7
117	Optimized synthesis of luminescent silica nanoparticles by a direct micelle-assisted method. Photochemical and Photobiological Sciences, 2019, 18, 2142-2149.	2.9	7
118	Allenamides Playing Domino: A Redoxâ∈Neutral Photocatalytic Synthesis of Functionalized 2â∈Aminofurans. Advanced Synthesis and Catalysis, 2022, 364, 362-371.	4.3	7
119	Oscillating photoluminescence in the cerium ion catalyzed Belousov-Zhabotinsky reaction. Chemical Physics Letters, 1995, 237, 346-348.	2.6	6
120	Self-Assembly of Monolayer-Coated Silver Nanoparticles on Gold Electrodes. An Electrochemical Investigation. Collection of Czechoslovak Chemical Communications, 2003, 68, 1395-1406.	1.0	6
121	The Role of Onium Salts in the Proâ€Oxidant Effect of Gold Nanoparticles in Lipophilic Environments. Chemistry - A European Journal, 2018, 24, 9113-9119.	3.3	6
122	Antioxidant effect of cardanol in mixed nanoformulations with pluronic. Journal of Molecular Liquids, 2020, 316, 113822.	4.9	6
123	Fluorogenic hyaluronan nanogels for detection of micro- and nanoplastics in water. Environmental Science: Nano, 2022, 9, 582-588.	4.3	6
124	Collective Properties Extend Resistance to Photobleaching of Highly Doped PluS NPs. European Journal of Inorganic Chemistry, 2017, 2017, 5094-5097.	2.0	5
125	PluS Nanoparticles Loaded with Sorafenib: Synthetic Approach and Their Effects on Endothelial Cells. ACS Omega, 2019, 4, 13962-13971.	3.5	5
126	Specific, Surface-Driven, and High-Affinity Interactions of Fluorescent Hyaluronan with PEGylated Nanomaterials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6806-6813.	8.0	5

#	Article	IF	CITATIONS
127	pH-dependent absorption and emission properties of a Rel complex working as a carboxylate ligand for Cu2+. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159, 249-252.	3.9	4
128	Aminoacidic units wired on poly(aryleneethynylene) platforms as highly selective mercury-responsive materials. Tetrahedron Letters, 2013, 54, 303-307.	1.4	4
129	Synthesis, complexation properties and spectroscopic studies of the cation-induced conformational changes of some new oligooxaethylene-spacered diporphyrin arrays. New Journal of Chemistry, 2001, 25, 597-605.	2.8	3
130	3 Synthesis of Upconverting Nanomaterials: Designing the Composition and Nanostructure. Nanomaterials and Their Applications, 2016, , 37-68.	0.0	3
131	pH controlled emission of ruthenium(II)–tris–bipyridine complexes. Inorganica Chimica Acta, 2002, 336, 1-7.	2.4	2
132	Gold nanoparticles stabilized using a fluorescent propargylic ester terminal alkyne at room temperature. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	2
133	Luminescent Chemosensors: From Molecules to Nanostructures. Lecture Notes in Quantum Chemistry II, 2016, , 479-497.	0.3	2
134	Luminescent Silica Nanoparticles Featuring Collective Processes for Optical Imaging. Topics in Current Chemistry, 2016, 370, 1-28.	4.0	2
135	Fluorescent silica nanoparticles., 2006,,.		1
136	Origins of ?on?off? Fluorescent Behavior of 8-Hydroxyquinoline Containing Chemosensors ChemInform, 2005, 36, no.	0.0	0
137	Frontispiece: Photoluminescenceâ€Based Techniques for the Detection of Micro―and Nanoplastics. Chemistry - A European Journal, 2021, 27, .	3.3	0