Christof Taxis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/455839/publications.pdf

Version: 2024-02-01

32 papers 3,678 citations

³⁹⁴²⁸⁶
19
h-index

434063 31 g-index

35 all docs 35 docs citations

35 times ranked 4248 citing authors

#	Article	IF	CITATIONS
1	A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast, 2004, 21, 947-962.	0.8	1,837
2	Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nature Cell Biology, 2002, 4, 134-139.	4.6	489
3	A LOV2 Domain-Based Optogenetic Tool to Control Protein Degradation and Cellular Function. Chemistry and Biology, 2013, 20, 619-626.	6.2	227
4	System of centromeric, episomal, and integrative vectors based on drug resistance markers for <i>Saccharomyces cerevisiae</i> . BioTechniques, 2006, 40, 73-78.	0.8	174
5	Use of Modular Substrates Demonstrates Mechanistic Diversity and Reveals Differences in Chaperone Requirement of ERAD. Journal of Biological Chemistry, 2003, 278, 35903-35913.	1.6	169
6	ER-Golgi Traffic Is a Prerequisite for Efficient ER Degradation. Molecular Biology of the Cell, 2002, 13, 1806-1818.	0.9	105
7	Efficient protein depletion by genetically controlled deprotection of a dormant Nâ€degron. Molecular Systems Biology, 2009, 5, 267.	3.2	92
8	Spore number control and breeding in Saccharomyces cerevisiae. Journal of Cell Biology, 2005, 171, 627-640.	2.3	73
9	The deca-GX3 proteins Yae1-Lto1 function as adaptors recruiting the ABC protein Rli1 for iron-sulfur cluster insertion. ELife, 2015, 4, e08231.	2.8	62
10	Targeted protein depletion in Saccharomyces cerevisiae by activation of a bidirectional degron. BMC Systems Biology, 2010, 4, 176.	3.0	56
11	Photo-sensitive degron variants for tuning protein stability by light. BMC Systems Biology, 2014, 8, 128.	3.0	56
12	Dynamic Organization of the Actin Cytoskeleton During Meiosis and Spore Formation in Budding Yeast. Traffic, 2006, 7, 1628-1642.	1.3	39
13	Cytokinesis in yeast meiosis depends on the regulated removal of Ssp1p from the prospore membrane. EMBO Journal, 2007, 26, 1843-1852.	3.5	32
14	A Tobacco Etch Virus Protease with Increased Substrate Tolerance at the P1' position. PLoS ONE, 2013, 8, e67915.	1.1	32
15	Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis. EMBO Journal, 2006, 25, 3856-3868.	3.5	28
16	TIPI: TEV Protease-Mediated Induction of Protein Instability. Methods in Molecular Biology, 2012, 832, 611-626.	0.4	25
17	Synthetic Control of Protein Degradation during Cell Proliferation and Developmental Processes. ACS Omega, 2019, 4, 2766-2778.	1.6	25
18	Optogenetic Downregulation of Protein Levels with an Ultrasensitive Switch. ACS Synthetic Biology, 2019, 8, 1026-1036.	1.9	24

#	Article	IF	CITATIONS
19	The Mitotic Exit Network Regulates Spindle Pole Body Selection During Sporulation of <i>Saccharomyces cerevisiae</i> . Genetics, 2017, 206, 919-937.	1.2	23
20	Acetate Regulation of Spore Formation Is under the Control of the Ras/Cyclic AMP/Protein Kinase A Pathway and Carbon Dioxide in Saccharomyces cerevisiae. Eukaryotic Cell, 2012, 11, 1021-1032.	3.4	22
21	An Optogenetic Tool for Induced Protein Stabilization Based on the Phaeodactylum tricornutum Aureochrome 1a Light–Oxygen–Voltage Domain. Journal of Molecular Biology, 2020, 432, 1880-1900.	2.0	22
22	Proteasome Activity Is Influenced by the HECT_2 Protein Ipa1 in Budding Yeast. Genetics, 2018, 209, 157-171.	1.2	13
23	Controlling Protein Activity and Degradation Using Blue Light. Methods in Molecular Biology, 2016, 1408, 67-78.	0.4	13
24	Strategies to investigate protein turnover with fluorescent protein reporters in eukaryotic organisms. AIMS Biophysics, 2020, 7, 90-118.	0.3	9
25	Development of a Synthetic Switch to Control Protein Stability in Eukaryotic Cells with Light. Methods in Molecular Biology, 2017, 1596, 241-255.	0.4	7
26	Degradation of integral membrane proteins modified with the photosensitive degron module requires the cytosolic endoplasmic reticulum–associated degradation pathway. Molecular Biology of the Cell, 2019, 30, 2558-2570.	0.9	7
27	Regulation of exocytotic events by centrosome-analogous structures. Topics in Current Genetics, 2004, , 193-207.	0.7	4
28	Biophotography: concepts, applications and perspectives. Applied Microbiology and Biotechnology, 2016, 100, 3415-3420.	1.7	4
29	An Optogenetic Toolbox for Synergistic Regulation of Protein Abundance. ACS Synthetic Biology, 2021, 10, 3411-3421.	1.9	4
30	Lightâ€induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary <i>Saccharomyces cerevisiae</i> cultures. Biotechnology Journal, 2022, 17, e2100676.	1.8	3
31	A safety catch for ornithine decarboxylase degradation. Microbial Cell, 2015, 2, 174-177.	1.4	2
32	Development of an Optogenetic Tool to Regulate Protein Stability In Vivo., 0,, 118-131.		0