List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4558303/publications.pdf Version: 2024-02-01

SHAO-HUA LUO

#	Article	IF	CITATIONS
1	Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Science Bulletin, 2020, 65, 546-556.	4.3	292
2	Spinel-structured high entropy oxide (FeCoNiCrMn)3O4 as anode towards superior lithium storage performance. Journal of Alloys and Compounds, 2020, 844, 156158.	2.8	178
3	A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14309-14318.	5.2	157
4	High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. Journal of Power Sources, 2019, 415, 165-171.	4.0	139
5	Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chemical Engineering Journal, 2020, 381, 122695.	6.6	131
6	K 0.67 Ni 0.17 Co 0.17 Mn 0.66 O 2 : A cathode material for potassium-ion battery. Electrochemistry Communications, 2017, 82, 150-154.	2.3	127
7	Effects of morphology on the visible-light-driven photocatalytic and bactericidal properties of BiVO4/CdS heterojunctions: A discussion on photocatalysis mechanism. Journal of Alloys and Compounds, 2020, 817, 153246.	2.8	103
8	Direct Growth of MoO ₂ /Reduced Graphene Oxide Hollow Sphere Composites as Advanced Anode Materials for Potassiumâ€ion Batteries. ChemSusChem, 2019, 12, 873-880.	3.6	100
9	Layered potassium-deficient P2- and P3-type cathode materials KxMnO2 for K-ion batteries. Chemical Engineering Journal, 2019, 356, 53-59.	6.6	99
10	Coal-based S hybrid self-doped porous carbon for high-performance supercapacitors and potassium-ion batteries. Journal of Power Sources, 2020, 461, 228151.	4.0	99
11	Design and synthesis of carbon-coated α-Fe2O3@Fe3O4 heterostructured as anode materials for lithium ion batteries. Applied Surface Science, 2019, 495, 143590.	3.1	94
12	High-performance α-Fe2O3/C composite anodes for lithium-ion batteries synthesized by hydrothermal carbonization glucose method used pickled iron oxide red as raw material. Composites Part B: Engineering, 2019, 164, 576-582.	5.9	84
13	Hydrothermal synthesis and characterization of α-Fe2O3/C using acid-pickled iron oxide red for Li-ion batteries. Journal of Hazardous Materials, 2019, 368, 714-721.	6.5	73
14	Monodisperse multicore-shell SnSb@SnOx/SbOx@C nanoparticles space-confined in 3D porous carbon networks as high-performance anode for Li-ion and Na-ion batteries. Chemical Engineering Journal, 2019, 371, 356-365.	6.6	65
15	Biomorphic carbon derived from corn husk as a promising anode materials for potassium ion battery. Electrochimica Acta, 2019, 324, 134902.	2.6	64
16	Double-carbon coated Na3V2(PO4)3 as a superior cathode material for Na-ion batteries. Applied Surface Science, 2019, 487, 1159-1166.	3.1	61
17	Constructing N-Doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries. Chemical Engineering Journal, 2020, 384, 123327.	6.6	60
18	In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Metals, 2020, 39, 1383-1394.	3.6	57

#	Article	IF	CITATIONS
19	Synthesis of Er-doped LiMnPO4/C by a sol-assisted hydrothermal process with superior rate capability. Journal of Electroanalytical Chemistry, 2019, 832, 196-203.	1.9	53
20	Cu-doped layered P2-type Na0.67Ni0.33-xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries. Chemical Engineering Journal, 2021, 404, 126578.	6.6	53
21	High-Surface-Area and Porous Co ₂ P Nanosheets as Cost-Effective Cathode Catalysts for Li〓O ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 21281-21290.	4.0	52
22	Hierarchically nitrogen-doped carbon wrapped Ni _{0.6} Fe _{0.4} Se ₂ binary-metal selenide nanocubes with extraordinary rate performance and high pseudocapacitive contribution for sodium-ion anodes. Journal of Materials Chemistry A, 2021, 9, 1610-1622.	5.2	52
23	Hybrid porous flower-like NiO@CeO2microspheres with improved pseudocapacitiveproperties. Electrochimica Acta, 2019, 297, 593-605.	2.6	51
24	Potassium vanadate K0.23V2O5 as anode materials for lithium-ion and potassium-ion batteries. Journal of Power Sources, 2018, 389, 77-83.	4.0	50
25	Three-Dimensional Honeycomb-Structural LiAlO ₂ -Modified LiMnPO ₄ Composite with Superior High Rate Capability as Li-Ion Battery Cathodes. ACS Applied Materials & Interfaces, 2018, 10, 10786-10795.	4.0	49
26	Approaching Highâ€Performance Supercapacitors via Enhancing Pseudocapacitive Nickel Oxideâ€Based Materials. Advanced Sustainable Systems, 2020, 4, 1900137.	2.7	49
27	Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries. Journal of Power Sources, 2019, 441, 227191.	4.0	47
28	BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution. Journal of Colloid and Interface Science, 2020, 580, 429-438.	5.0	47
29	Rational Design of Yolk–Shell ZnCoSe@Nâ€Doped Dual Carbon Architectures as Longâ€Life and Highâ€Rate Anodes for Half/Full Naâ€Ion Batteries. Small, 2021, 17, e2101887.	5.2	46
30	High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries. Rare Metals, 2022, 41, 1265-1275.	3.6	46
31	Walnut septum-derived hierarchical porous carbon for ultra-high-performance supercapacitors. Rare Metals, 2022, 41, 2280-2291.	3.6	46
32	Nitrogen-Coordinated CoS ₂ @NC Yolk–Shell Polyhedrons Catalysts Derived from a Metal–Organic Framework for a Highly Reversible Li-O ₂ Battery. ACS Applied Materials & Interfaces, 2021, 13, 17658-17667.	4.0	43
33	Improved lithium storage properties of Co3O4 nanoparticles via laser irradiation treatment. Electrochimica Acta, 2018, 281, 31-38.	2.6	41
34	Lowâ€Cost Layered K _{0.45} Mn _{0.9} Mg _{0.1} O ₂ as a Highâ€Performance Cathode Material for Kâ€ŀon Batteries. ChemElectroChem, 2019, 6, 2308-2315.	1.7	41
35	Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance. Rare Metals, 2021, 40, 2464-2473.	3.6	41
36	Influence of lanthanum doping on performance of LiFePO4 cathode materials for lithium-ion batteries. Journal of Rare Earths, 2010, 28, 439-442.	2.5	39

#	Article	IF	CITATIONS
37	Electrochemical properties of carbon-mixed LiFePO4 cathode material synthesized by the ceramic granulation method. Ceramics International, 2008, 34, 1349-1351.	2.3	38
38	Metal-organic framework-derived cobalt nanoparticle space confined in nitrogen-doped carbon polyhedra networks as high-performance bifunctional electrocatalyst for rechargeable Li–O2 batteries. Journal of Power Sources, 2020, 453, 227899.	4.0	38
39	Ingeniously Designed Yolk–Shell-Structured FeSe ₂ @NDC Nanoboxes as an Excellent Long-Life and High-Rate Anode for Half/Full Na-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 51095-51106.	4.0	38
40	Optimization of Synergistic Leaching of Valuable Metals from Spent Lithium-Ion Batteries by the Sulfuric Acid-Malonic Acid System Using Response Surface Methodology. ACS Applied Materials & Interfaces, 2022, 14, 11359-11374.	4.0	38
41	Stable Electrochemical Properties of Magnesium-Doped Co-Free Layered P2-Type Na _{0.67} Ni _{0.33} Mn _{0.67} O ₂ Cathode Material for Sodium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 4994-5004.	3.2	38
42	Facile synthesis of carbon-LiMnPO4 nanorods with hierarchical architecture as a cathode for high-performance Li-ion batteries. Electrochimica Acta, 2018, 289, 415-421.	2.6	35
43	Novel P2-type layered medium-entropy ceramics oxide as cathode material for sodium-ion batteries. Journal of Advanced Ceramics, 2022, 11, 158-171.	8.9	35
44	A novel and low-cost iron source for synthesizing Cl-doped LiFePO4/C cathode materials for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2019, 850, 113434.	1.9	33
45	The critical role of sodium content on structure, morphology and electrochemical performance of layered P2-type Na x Ni 0.167 Co 0.167 Mn 0.67 O 2 for sodium ion batteries. Journal of Power Sources, 2017, 362, 323-331.	4.0	31
46	Cleaner and effective recovery of metals and synthetic lithium-ion batteries from extracted vanadium residue through selective leaching. Journal of Power Sources, 2021, 482, 228970.	4.0	31
47	A Simple and Lowâ€Cost Method to Synthesize Crâ€Doped αâ€Fe ₂ O ₃ Electrode Materials for Lithiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 856-864.	1.7	30
48	Biocarbon with different microstructures derived from corn husks and their potassium storage properties. Rare Metals, 2021, 40, 3166-3174.	3.6	30
49	NaCl-Template Assisted Synthesis of 3D Honeycomb-Like LiMnPO ₄ /C with High Rate and Stable Performance as Lithium-Ion Battery Cathodes. ACS Sustainable Chemistry and Engineering, 2018, 6, 16683-16691.	3.2	29
50	Improving the electrochemical performance of layered cathode oxide for sodium-ion batteries by optimizing the titanium content. Journal of Colloid and Interface Science, 2019, 544, 164-171.	5.0	29
51	Asymmetric, Flexible Supercapacitor Based on Fe–Co Alloy@Sulfide with High Energy and Power Density. ACS Applied Materials & Interfaces, 2021, 13, 49952-49963.	4.0	29
52	Fabrication of Porous Carbon with Controllable Nitrogen Doping as Anode for Highâ€Performance Potassiumâ€Ion Batteries. ChemElectroChem, 2019, 6, 3699-3707.	1.7	28
53	Facile Fabrication of Hierarchical LiMnPO ₄ Microspheres for High-Performance Lithium-Ion Batteries Cathode. Journal of the Electrochemical Society, 2019, 166, A118-A124.	1.3	28
54	One-pot synthesis of small-sized Ni3S2 nanoparticles deposited on graphene oxide as composite anode materials for high-performance lithium-/sodium-ion batteries. Applied Surface Science, 2020, 531, 147316.	3.1	28

#	Article	IF	CITATIONS
55	Facile hydrothermal synthesis of urchinâ€like <scp> NiCo ₂ O ₄ </scp> as advanced electrochemical pseudocapacitor materials. International Journal of Energy Research, 2021, 45, 20186-20198.	2.2	28
56	Study on preparation and performance of iron tailings-based porous ceramsite filter materials for water treatment. Separation and Purification Technology, 2021, 276, 119380.	3.9	28
57	Metal-organic framework derived CoSe2/N-doped carbon core-shell nanoparticles encapsulated in porous N-doped carbon nanotubes as high-performance anodes for sodium-ion batteries. Journal of Power Sources, 2022, 535, 231444.	4.0	28
58	Na ₃ V ₂ (PO ₄) ₃ /C Composite Prepared by Sol-Gel Method as Cathode for Sodium Ion Batteries. Journal of the Electrochemical Society, 2018, 165, A1460-A1465.	1.3	27
59	Improved rate performance of LiNi0.5Mn1.5O4 as cathode of lithium-ion battery by Li0.33La0.56TiO3 coating. Materials Letters, 2019, 239, 56-58.	1.3	27
60	Three-dimensional porous bowl-shaped carbon cages interspersed with carbon coated Ni–Sn alloy nanoparticles as anode materials for high-performance lithium-ion batteries. New Journal of Chemistry, 2017, 41, 393-402.	1.4	26
61	Tailoring the sodium doped LiMnPO4/C orthophosphate to nanoscale as a high-performance cathode for lithium ion battery. Applied Surface Science, 2020, 530, 146628.	3.1	25
62	Research progress of tunnel-type sodium manganese oxide cathodes for SIBs. Chinese Chemical Letters, 2022, 33, 2316-2326.	4.8	24
63	Recent Advances on Spinel Zinc Manganate Cathode Materials for Zincâ€lon Batteries. Chemical Record, 2022, 22, .	2.9	22
64	NiCo alloy nanoparticles encapsulated in N-doped 3D porous carbon as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 22797-22807.	3.8	20
65	Precise tuning of low-crystalline Sb@Sb2O3 confined in 3D porous carbon network for fast and stable potassium ion storage. Journal of Materials Science and Technology, 2021, 94, 123-129.	5.6	20
66	Study on the high-efficiency separation of Fe and Mn from low-grade pyrolusite and the preparation of LiMn2O4 materials for lithium-ion batteries. Separation and Purification Technology, 2021, 278, 119611.	3.9	20
67	Synthesis and electrochemical properties of LiFePO4 cathode material by ionic thermal method using eutectic mixture of tetramethyl ammonium chloride–urea. Rare Metals, 2021, 40, 3477-3484.	3.6	19
68	Low-cost heterogeneous dual-carbon shells coated silicon monoxide porous composites as anodes for high-performance lithium-ion batteries. Journal of Colloid and Interface Science, 2019, 549, 225-235.	5.0	18
69	Li0.95Na0.05MnPO4/C nanoparticles compounded with reduced graphene oxide sheets for superior lithium ion battery cathode performance. Ceramics International, 2019, 45, 4849-4856.	2.3	18
70	Fabricated and improved electrochemical properties of Li2MnSiO4 cathodes by hydrothermal reaction for Li-ion batteries. Ceramics International, 2012, 38, 4325-4329.	2.3	17
71	Co-precipitation assisted hydrothermal method to synthesize Li0.9Na0.1Mn0.9Ni0.1PO4/C nanocomposite as cathode for lithium ion battery. Journal of Alloys and Compounds, 2018, 768, 991-994.	2.8	17
72	In-situ growth of LiMnPO4 on porous LiAlO2 nanoplates substrates from AAO synthesized by hydrothermal reaction with improved electrochemical performance. Electrochimica Acta, 2016, 193, 16-23.	2.6	16

#	Article	IF	CITATIONS
73	Co-hydrothermal synthesis of LiMn 23/24 Mg 1/24 PO 4 ·LiAlO 2 /C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries. Applied Surface Science, 2017, 394, 190-196.	3.1	16

Preparation and electrochemical properties of cationic substitution Li2Mn0.98M0.02SiO4 (M = Mg, Ni,) Tj ETQq0 0.0 rgBT /Overlock 10

75	High-Operating Voltage, Long-Life Layered Oxides for Sodium Ion Batteries Enabled by Cosubstitution of Titanium and Magnesium. ACS Sustainable Chemistry and Engineering, 2021, 9, 2534-2542.	3.2	16
76	Template-assisted <i>in situ</i> confinement synthesis of nitrogen and oxygen co-doped 3D porous carbon network for high-performance sodium-ion battery anode. New Journal of Chemistry, 2018, 42, 14410-14416.	1.4	15
77	Construction of NiCo2O4 nanorods into 3D porous ultrathin carbon networks for high-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 783, 1-9.	2.8	14
78	Green synthesis of reduced graphene oxide as high-performance electrode materials for supercapacitors. Ionics, 2020, 26, 415-422.	1.2	14
79	Study on the high-efficiency separation of Fe in extracted vanadium residue by sulfuric acid roasting and the solidification behavior of V and Cr. Separation and Purification Technology, 2021, 269, 118687.	3.9	14
80	Extraction and separation of Fe and Ti from extracted vanadium residue by enhanced ammonium sulfate leaching and synthesis of LiFePO4/C for lithium-ion batteries. Separation and Purification Technology, 2022, 282, 120065.	3.9	14
81	Morphological evolution of hollow NiCo ₂ O ₄ microspheres and their high pseudocapacitance contribution for Li/Na-ion battery anodes. New Journal of Chemistry, 2018, 42, 17762-17768.	1.4	13
82	Hydrothermal synthesis of nano spheroidâ€like <scp> ZnMn ₂ O ₄ </scp> materials as highâ€performance anodes for lithiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 18081-18090.	2.2	13
83	Preparation and electrochemical properties of <scp>Alâ€F</scp> coâ€doped spinel <scp> LiMn ₂ O ₄ </scp> singleâ€crystal material for lithiumâ€ion battery. International Journal of Energy Research, 2021, 45, 21158-21169.	2.2	13
84	Manganese Extraction from Low-Grade Pyrolusite by Roasting with H2SO4. Jom, 2018, 70, 2008-2014.	0.9	12
85	Excess capacity on compound phases of Li2FeTiO4 composite cathode materials synthesized by hydrothermal reaction using optional titanium sources to boost battery performance. Chinese Chemical Letters, 2020, 31, 3200-3204.	4.8	12
86	Preparation of neodymiumâ€doped <scp> LiMnPO ₄ </scp> /C cathode by solâ€gel method with excellent electrochemical performance for lithiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 10590-10598.	2.2	12
87	Synthesis and Optimization of ZnMn ₂ O ₄ Cathode Material for Zinc-Ion Battery by Citric Acid Sol-Gel Method. Journal of the Electrochemical Society, 2022, 169, 030531.	1.3	12
88	Sol-gel synthesis of nano block-like ZnMn2O4 using citric acid complexing agent and electrochemical performance as anode for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 909, 164882.	2.8	12
89	Carbothermal reduction preparation and performance of LiFePO4/C by using ammonium jarosite extracted from vanadium slag as iron source. Ionics, 2019, 25, 5725-5734.	1.2	11
90	In Situ Construction of Multibuffer Structure 3D CoSn@SnO x /CoO x @C Anode Material for Ultralong Life Lithium Storage. Energy Technology, 2020, 8, 1900829.	1.8	11

#	Article	IF	CITATIONS
91	Carbothermal reduction of LiFePO4/C composite cathodes using acid-washed iron red as raw material through carboxylic acid pyrolysis reducing gas participation strategies. Electrochimica Acta, 2020, 363, 137159.	2.6	11
92	Study on synthesis of spinel <scp> LiNi ₀ </scp> _. <scp> ₅ Mn ₁ </scp> _. <scp> ₅ O ₄ </scp> cathode material and its electrochemical properties by twoâ€stage roasting. International Journal of Energy Research, 2021, 45, 8932-8941.	2.2	11
93	Dualâ€phase structure design of Mnâ€site nickel doping <scp> Li ₂ MnSiO ₄ </scp> @C cathode material for improved electrochemical lithium storage performance. International Journal of Energy Research, 2021, 45, 14720-14731.	2.2	11
94	Improved electrocatalytic activity of hexagonal prisms Fe3O4 derived from metal-organic framework by covering dendritic-shaped carbon layer in Li–O2 battery. Composites Part B: Engineering, 2021, 226, 109354.	5.9	11
95	N-doped hollow carbon spheres as a high-performance anode for potassium-based dual-ion battery. Journal of Energy Storage, 2022, 54, 105285.	3.9	11
96	Biomass CQDs derivate carbon as high-performance anode for K-ion battery. Journal of Alloys and Compounds, 2022, 922, 166260.	2.8	11
97	Study on the properties of Li2MnSiO4 as cathode material for lithium-ion batteries by sol-gel method. Ionics, 2020, 26, 1611-1616.	1.2	10
98	Improved electrochemical performance of lanthanum-modified Na ₃ V ₂ (PO ₄) ₃ /C cathode materials for sodium-ion batteries. New Journal of Chemistry, 2021, 45, 906-914.	1.4	10
99	Insight into structural and electrochemical properties of Mgâ€doped <scp> LiMnPO ₄ </scp> /C cathode materials with firstâ€principles calculation and experimental verification. International Journal of Energy Research, 2021, 45, 20715-20728.	2.2	10
100	Facile design and synthesis of Co-free layered O3-type NaNi0.2Mn0.2Fe0.6O2 as promising cathode material for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2022, 914, 116301.	1.9	10
101	Novel high-capacity hybrid layered oxides NaxLi1.5-xNi0.167Co0.167Mn0.67O2 as promising cathode materials for rechargeable sodium ion batteries. Ceramics International, 2018, 44, 22512-22519.	2.3	9
102	Synthesis of morphology controllable free-standing Co3O4 nanostructures and their catalytic activity for Li O2 cells. Electrochimica Acta, 2019, 307, 232-240.	2.6	9
103	Influence of Welding Speed on Zigzag Line Feature and Tensile Property of a Friction-Stir-Welded Al-Zn-Mg Aluminum Alloy. Journal of Materials Engineering and Performance, 2019, 28, 1790-1800.	1.2	9
104	Optimize hydrothermal synthesis and electrochemical performance of Li2FeTiO4 composite cathode materials by using orthogonal experimental design method. Ionics, 2020, 26, 1657-1662.	1.2	9
105	Enhanced electrochemical performance of LiAlO2-LiMnPO4/C composite using LiAlO2 from AAO synthesis by hydrothermal rout. Ionics, 2020, 26, 4977-4983.	1.2	9
106	Hydrothermal synthesis of LiAlO2 nanostructures with high specific surface area by using anodized aluminum oxide template. Materials Letters, 2017, 196, 183-186.	1.3	8
107	Preparation of high performance LiFePO4/C by extracting iron element from iron tailings by concentrated sulfuric acid hot dip method. Ionics, 2020, 26, 1645-1655.	1.2	8
108	Preparation of LiNi0.5Mn1.5O4 cathode materials by non-constant temperature calcination and research on its performance. Ionics, 2022, 28, 555-565.	1.2	8

#	Article	IF	CITATIONS
109	The recent progress of <scp> Li ₂ FeSiO ₄ </scp> as a polyâ€anionic cathode material for lithiumâ€ion batteries. International Journal of Energy Research, 2022, 46, 5373-5398.	2.2	8
110	Facile and scalable synthesis of <i>î±</i> -Fe ₂ O ₃ / <i>î³</i> -Fe ₂ O ₃ /Fe/C nanocomposite as advanced anode materials for lithium/sodium ion batteries. Nanotechnology, 2020, 31, 155402.	1.3	7
111	Twoâ€position intrinsic element complement: Synthesis and electrochemical properties of Li _{2 +} <scp>_xMn_{1â€x}SiO₄</scp> @carbon as catho materials for lithium batteries. International Journal of Energy Research, 2021, 45, 16922-16931.	de2.2	7
112	Preparation of manganese dioxide from low-grade pyrolusite and its electrochemical performance for supercapacitors. Ceramics International, 2019, 45, 21457-21466.	2.3	6
113	Extraction of Copper and Nickel from Low-Grade Nickel Sulfide Ore by Low-Temperature Roasting, Selective Decomposition and Water-Leaching Process. Jom, 2019, 71, 4647-4658.	0.9	6
114	Investigations on the preparation and electrochemical performance of the Li4Ti5O12/LiMn23/24Mg1/24PO4 full cell with a long lifespan. Ionics, 2020, 26, 4267-4275.	1.2	6
115	Porous Na3V2(PO4)3/C as cathode material for high-rate sodium-ion batteries by sacrificed template method. Ionics, 2020, 26, 5011-5018.	1.2	6
116	CuS nanoblocks embedded in the three-dimensional porous carbon as composite anode materials for high-performance lithium-ion battery. Ionics, 2021, 27, 897-905.	1.2	6
117	Based on first-principles calculation, study on the synthesis, and performance of Fe–Ni co-doped LiMnPO4/C as cathode material for lithium-ion batteries. Ionics, 2022, 28, 577-591.	1.2	6
118	Direct Extraction of Nickel and Copper from Low-Grade Nickel Sulfide Ore by Chlorination Roasting with Mixed MgCl2·6H2O and NaCl. Jom, 2022, 74, 1989-1999.	0.9	6
119	Facile microwave-assisted hydrothermal synthesis and improved electrochemical performance of micro rhombus ZnMn2O4 anodes for Li-ion batteries. Journal of Electroanalytical Chemistry, 2022, 912, 116237.	1.9	6
120	Synthesis and electrochemical performance of nanosheet lamellar ZnMn2O4 anodes for Li-ion batteries by microwave hydrothermal method. Ionics, 2022, 28, 4195-4203.	1.2	5
121	Preparation and electrochemical performance of Li 2 MnSiO 4 cathode material doped with chromium on manganese site. International Journal of Energy Research, 2021, 45, 20483.	2.2	4
122	<scp>P2â€K₀</scp> _. <scp>₇₆Fe₀</scp> _. <scp> from earthâ€abundant elements for rechargeable potassium ion battery. Energy Storage, 2022, 4, e277.</scp>	<sub>2<td>sub>Mg<sub< td=""></sub<></td></sub>	sub>Mg <sub< td=""></sub<>
123	Controllable synthesis of polystyrene microspheres used as template and inâ€situ carbon source for <scp> Li ₂ MnSiO ₄ </scp> cathode material to boost lithiumâ€ion batteries performance. International Journal of Energy Research, 2022, 46, 1711-1721.	2.2	4
124	Investigation on Structural and Electrochemical Properties of Olivine-Structured LiMn _{1â^'x} Fe _x PO ₄ /C Cathode Materials Based on First-Principles Calculation. Journal of the Electrochemical Society, 2022, 169, 010508.	1.3	4
125	Micrometer Carbon Ball-Decorated Nanowire-Structured SnO ₂ @C Composites as an Anode for Potassium-Ion Batteries with Enhanced Performance. Energy & Fuels, 2022, 36, 2833-2840.	2.5	4
126	High cycling stability graphite cathode modified by artificial CEI for potassium-based dual-ion batteries. Journal of Alloys and Compounds, 2022, 918, 165436.	2.8	4

#	Article	IF	CITATIONS
127	Preparation of LiFePO4/H2Ti3O7 and LiFePO4/TiO2 nanocomposite by sol-gel method as cathode material for lithium-ion battery. lonics, 2020, 26, 2139-2145.	1.2	3
128	Optimize solidâ€state synthesis of P2â€Na 0 . 67 Ni 0 . 33 Mn 0 . 67 O 2 cathode materials by using the orthogonal experimental design method. International Journal of Energy Research, 2021, 45, 16865-16873.	2.2	3
129	Highâ€performance <scp>LiFePO₄</scp> cathode material was prepared by multiple intensification process with acidâ€washed iron red as raw material. International Journal of Energy Research, 2021, 45, 18245-18256.	2.2	3
130	Preparation and electrochemical performance of Na+ and Co2+ co-doped Li0.9Na0.1Mn1-xCoxPO4/C cathode material for Li-ion battery. Ionics, 2021, 27, 3251-3257.	1.2	2
131	Ultrahigh capacity potassium-based dual carbon batteries with a high concentration electrolyte. Sustainable Energy and Fuels, 0, , .	2.5	2
132	Effect of Different Calcination Temperatures on the Highâ€Temperature Properties of AlPO 4 â€Coated Modified Spinel LiNi 0.5 Mn 1.5 O 4 Material. Energy Technology, 0, , 2100637.	1.8	1
133	Investigations on Preparation and Electrochemical Performance Optimization of LiMnPO ₄ /C Composites with High Tap Density. Particle and Particle Systems Characterization, 2022, 39, 2100203.	1.2	1
134	Coral-Like Hierarchical Nanostructured ZnMn ₂ O ₄ /Mn ₂ O ₃ Composites Synthesized by Zinc-Absent Method as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 050530.	1.3	1
135	Tuning the structural stability and spin-glass behavior in α-MnO ₂ nanotubes by Sn ion doping. Physical Chemistry Chemical Physics, 2022, , .	1.3	0