Simone Fattorini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4558220/publications.pdf

Version: 2024-02-01

177 papers 3,592 citations

147566 31 h-index 223531 46 g-index

201 all docs

201 docs citations

times ranked

201

4254 citing authors

#	Article	IF	CITATIONS
1	The isolated <i>Erebia pandrose</i> Apennine population is genetically unique and endangered by climate change. Insect Conservation and Diversity, 2022, 15, 136-148.	1.4	18
2	Conservation biogeography of highâ€altitude longhorn beetles under climate change. Insect Conservation and Diversity, 2022, 15, 429-444.	1.4	5
3	Odonate Diversity Patterns in Italy Disclose Intricate Colonization Pathways. Biology, 2022, 11, 886.	1.3	4
4	Interactional behaviors of the parasitic beetle Paussus favieri with its ant host Pheidole pallidula: the mimetic role of the acoustical signals. Insect Science, 2021, 28, 548-554.	1.5	2
5	Influence of urbanization on the avian species-area relationship: insights from the breeding birds of Rome. Urban Ecosystems, 2021, 24, 779-788.	1.1	9
6	Wildfire does not affect the dung beetle diversity of high-altitude Mediterranean habitats. International Journal of Wildland Fire, 2021, 30, 636-642.	1.0	7
7	The Role of Inter- and Intraspecific Variations in Grassland Plant Functional Traits along an Elevational Gradient in a Mediterranean Mountain Area. Plants, 2021, 10, 359.	1.6	13
8	The Identification of Biodiversity Hotspots Using the Species–Area Relationship. , 2021, , 321-344.		5
9	Using the Species–Area Relationship to Predict Extinctions Resulting from Habitat Loss. , 2021, , 345-367.		4
10	Emergent Rarity Properties in Carabid Communities From Chinese Steppes With Different Climatic Conditions. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
11	Niche overlap and species co-occurrence patterns in carabid communities of the northern Chinese steppes. ZooKeys, 2021, 1044, 929-949.	0.5	11
12	Global tropical reef fish richness could decline by around half if corals are lost. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210274.	1.2	17
13	Diversity Patterns of Dung Beetles along a Mediterranean Elevational Gradient. Insects, 2021, 12, 781.	1.0	5
14	The Role of Small Lowland Patches of Exotic Forests as Refuges of Rare Endemic Azorean Arthropods. Diversity, 2021, 13, 443.	0.7	16
15	Development and reproduction of <i>Cataclysta lemnata < i>, a potential natural enemy of the invasive alien duckweed <i>Lemna minuta < i>in Italy., 2021, 88, 216-225.</i></i>		2
16	Comparison of Soil Biology Quality in Organically and Conventionally Managed Agro-Ecosystems Using Microarthropods. Agriculture (Switzerland), 2021, 11, 1022.	1.4	9
17	Variations in Plant Richness, Biogeographical Composition, and Life Forms along an Elevational Gradient in a Mediterranean Mountain. Plants, 2021, 10, 2090.	1.6	14
18	Mountain Biodiversity and Sustainable Development. Encyclopedia of the UN Sustainable Development Goals, 2021, , 640-660.	0.0	2

#	Article	IF	CITATIONS
19	Biodiversity Erosion: Causes and Consequences. Encyclopedia of the UN Sustainable Development Goals, 2021, , 81-90.	0.0	4
20	Ecological dependencies make remote reef fish communities most vulnerable to coral loss. Nature Communications, 2021, 12, 7282.	5.8	14
21	Diversity of European habitat types is correlated with geography more than climate and human pressure. Ecology and Evolution, 2021, 11, 18111-18124.	0.8	15
22	Experimental evidence of the consumption of the invasive alien duckweed Lemna minuta by herbivorous larvae of the moth Cataclysta lemnata in Italy. Aquatic Botany, 2020, 161, 103172.	0.8	12
23	Influence of Climate and Local Habitat Characteristics on Carabid Beetle Abundance and Diversity in Northern Chinese Steppes. Insects, 2020, 11, 19.	1.0	12
24	Conservation Biogeography of Tenebrionid Beetles: Insights from Italian Reserves. Diversity, 2020, 12, 348.	0.7	4
25	Fine-Scale Vegetation Characteristics Drive Insect Ensemble Structures in a Desert Ecosystem: The Tenebrionid Beetles (Coleoptera: Tenebrionidae) Inhabiting the Ulan Buh Desert (Inner Mongolia,) Tj ETQq $1\ 1\ 0$.	78 43 14 rg	:BT&Overlock
26	A new protocol for assessing the conservation priority of groundwaterâ€dependent ecosystems. Aquatic Conservation: Marine and Freshwater Ecosystems, 2020, 30, 1483-1504.	0.9	17
27	Small world in the real world: Long distance dispersal governs epidemic dynamics in agricultural landscapes. Epidemics, 2020, 30, 100384.	1.5	12
28	Elevational Patterns of Generic Diversity in the Tenebrionid Beetles (Coleoptera Tenebrionidae) of Latium (Central Italy). Diversity, 2020, 12, 47.	0.7	16
29	Factors influencing the precision of species richness estimation in Japanese vascular plants. Diversity and Distributions, 2020, 26, 769-778.	1.9	6
30	Use of microarthropods to evaluate the impact of fire on soil biological quality. Journal of Environmental Management, 2020, 266, 110624.	3.8	15
31	Competing Vegetation Structure Indices for Estimating Spatial Constrains in Carabid Abundance Patterns in Chinese Grasslands Reveal Complex Scale and Habitat Patterns. Insects, 2020, 11, 249.	1.0	8
32	Influence of elevation on the species–area relationship. Journal of Biogeography, 2020, 47, 2029-2041.	1.4	20
33	Mountain Biodiversity and Sustainable Development. Encyclopedia of the UN Sustainable Development Goals, 2020, , 1-21.	0.0	8
34	Beetle Species–Area Relationships and Extinction Rates in Protected Areas. Insects, 2020, 11, 646.	1.0	10
35	A grid-based map for the Biogeographical Regions of Europe. Biodiversity Data Journal, 2020, 8, e53720.	0.4	43
36	Activity density of carabid beetles along an urbanisation gradient. Acta Zoologica Academiae Scientiarum Hungaricae, 2020, 66, 21-36.	0.1	1

#	Article	IF	CITATIONS
37	A review of Aegean terrestrial biodiversity. Frontiers of Biogeography, 2019, 11, .	0.8	O
38	Carabid community stability is enhanced by carabid diversity but reduced by aridity in Chinese steppes. Acta Oecologica, 2019, 99, 103450.	0.5	12
39	Biodiversity Erosion: Causes and Consequences. Encyclopedia of the UN Sustainable Development Goals, 2019, , 1-10.	0.0	20
40	Macroecology of ground beetles: Species richness, range size and body size show different geographical patterns across a climatically heterogeneous area. Journal of Biogeography, 2019, 46, 2548-2557.	1.4	8
41	Recognizing and interpreting vegetational belts: New wine in the old bottles of a von Humboldt's legacy. Journal of Biogeography, 2019, 46, 1643-1651.	1.4	21
42	Temporal variations in the diversity of airborne fungal spores in a Mediterranean high altitude site. Atmospheric Environment, 2019, 210, 166-170.	1.9	10
43	Taxonomic variation in levels of endemism: a case study of Italian tenebrionid beetles. Insect Conservation and Diversity, 2019, 12, 351-361.	1.4	4
44	Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Scientific Reports, 2019, 9, 5636.	1.6	43
45	AQUALIFE Software: A New Tool for a Standardized Ecological Assessment of Groundwater Dependent Ecosystems. Water (Switzerland), 2019, 11, 2574.	1.2	14
46	Community structure of tenebrionid beetles in the Ulan Buh Desert (Inner Mongolia, China) (Coleoptera: Tenebrionidae). Fragmenta Entomologica, 2019, 51, 193-200.	0.4	3
47	Predicting beta diversity of terrestrial and aquatic beetles using ecogeographical variables: insights from the replacement and richness difference components. Journal of Biogeography, 2019, 46, 304-315.	1.4	48
48	Carabid community structure in northern China grassland ecosystems: Effects of local habitat on species richness, species composition and functional diversity. PeerJ, 2019, 6, e6197.	0.9	24
49	Avian species–area relationships indicate that towns are not different from natural areas. Environmental Conservation, 2018, 45, 419-424.	0.7	6
50	Earthquake impacts on microcrustacean communities inhabiting groundwater-fed springs alter species-abundance distribution patterns. Scientific Reports, 2018, 8, 1501.	1.6	19
51	Correlations between weather conditions and airborne pollen concentration and diversity in a Mediterranean high-altitude site disclose unexpected temporal patterns. Aerobiologia, 2018, 34, 75-87.	0.7	13
52	Island biogeography of insect conservation in urban green spaces. Environmental Conservation, 2018, 45, 1-10.	0.7	31
53	Biota from the coastal wetlands of Praia da Vit \tilde{A}^3 ria (Terceira, Azores, Portugal): Part 1 - Arthropods. Biodiversity Data Journal, 2018, 6, e27194.	0.4	12
54	Community structure of woody plants on islands along a bioclimatic gradient. Frontiers of Biogeography, 2018, 10, .	0.8	10

#	Article	IF	CITATIONS
55	Exploring multiple presence-absence data structures in ecology. Ecological Modelling, 2018, 383, 41-51.	1.2	6
56	Global Island Monitoring Scheme (GIMS): a proposal for the long-term coordinated survey and monitoring of native island forest biota. Biodiversity and Conservation, 2018, 27, 2567-2586.	1.2	72
57	Children's preferences for less diverse greenspaces do not disprove biophilia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7215-E7215.	3.3	6
58	Earthquake-Related Changes in Species Spatial Niche Overlaps in Spring Communities. Scientific Reports, 2017, 7, 443.	1.6	19
59	Plant recording across two centuries reveals dramatic changes in species diversity of a Mediterranean archipelago. Scientific Reports, 2017, 7, 5415.	1.6	40
60	Groundwater biodiversity in a chemoautotrophic cave ecosystem: how geochemistry regulates microcrustacean community structure. Aquatic Ecology, 2017, 51, 75-90.	0.7	30
61	The Watson–Forbes Biogeographical Controversy Untangled 170ÂYears Later. Journal of the History of Biology, 2017, 50, 473-496.	0.2	5
62	What can the parameters of the species–area relationship (<scp>SAR</scp>) tell us? Insights from Mediterranean islands. Journal of Biogeography, 2017, 44, 1018-1028.	1.4	46
63	Corals hosting symbiotic hydrozoans are less susceptible to predation and disease. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20172405.	1.2	36
64	Endemism in historical biogeography and conservation biology: concepts and implications. Biogeographia, 2017, 32, .	0.3	18
65	l Coleotteri Tenebrionidi del Sito d'Importanza Comunitaria "Foce Saccione – Bonifica Ramitelli― (Molise) (Coleoptera Tenebrionidae). Bollettino Della Società Entomologica Italiana, 2016, , 57-62.	0.1	3
66	When human needs meet beetle preferences: tenebrionid beetle richness covaries with human population on the Mediterranean islands. Insect Conservation and Diversity, 2016, 9, 369-373.	1.4	8
67	Are generalist parasites being lost from their hosts?. Journal of Animal Ecology, 2016, 85, 621-623.	1.3	6
68	Role of urban green spaces for saproxylic beetle conservation: a case study of tenebrionids in Rome, Italy. Journal of Insect Conservation, 2016, 20, 737-745.	0.8	19
69	A history of chorological categories. History and Philosophy of the Life Sciences, 2016, 38, 12.	0.6	16
70	Trapped in the web of water: Groundwaterâ€fed springs are islandâ€like ecosystems for the meiofauna. Ecology and Evolution, 2016, 6, 8389-8401.	0.8	27
71	Response of macrophyte communities to flow regulation in mountain streams. Environmental Monitoring and Assessment, 2016, 188, 414.	1.3	22
72	Using species abundance distribution models and diversity indices for biogeographical analyses. Acta Oecologica, 2016, 70, 21-28.	0.5	35

#	Article	IF	CITATIONS
73	Far from Naturalness: How Much Does Spatial Ecological Structure of European Tree Assemblages Depart from Potential Natural Vegetation?. PLoS ONE, 2016, 11, e0165178.	1.1	14
74	Insects and the city: what island biogeography tells us about insect conservation in urban areas. Web Ecology, 2016, 16, 41-45.	0.4	9
75	Human population density and tenebrionid richness covary in Mediterranean islands. Web Ecology, 2016, 16, 63-65.	0.4	0
76	On the concept of chorotype. Journal of Biogeography, 2015, 42, 2246-2251.	1.4	19
77	Calling for a new strategy to measure environmental (habitat) diversity in Island Biogeography: a case study of Mediterranean tenebrionids (Coleoptera: Tenebrionidae). Fragmenta Entomologica, 2015, 47, 1.	0.4	14
78	A Red List of Italian Saproxylic Beetles: taxonomic overview, ecological features and conservation issues (Coleoptera). Fragmenta Entomologica, 2015, 47, 53.	0.4	83
79	Use of taxonomic and chorological diversity to highlight the conservation value of insect communities in a Mediterranean coastal area: the carabid beetles (Coleoptera, Carabidae) of Castelporziano (Central Italy). Rendiconti Lincei, 2015, 26, 625-641.	1.0	4
80	Use of insect distribution across landscape-soil units to assess conservation priorities in a Mediterranean coastal reserve: the tenebrionid beetles of Castelporziano (Central Italy). Rendiconti Lincei, 2015, 26, 353-366.	1.0	5
81	Phylogenetic diversity of regional beetle faunas at high latitudes: patterns, drivers and chance along ecological gradients. Biodiversity and Conservation, 2015, 24, 2751-2767.	1.2	30
82	ECo: A new measure evaluating the degree of consistency between environmental factors and spatial arrangement of species assemblages. Ecological Indicators, 2015, 52, 66-74.	2.6	2
83	The Pied Piper: A Parasitic Beetle's Melodies Modulate Ant Behaviours. PLoS ONE, 2015, 10, e0130541.	1.1	22
84	Fauna Europaea: Coleoptera 2 (excl. series Elateriformia, Scarabaeiformia, Staphyliniformia and) Tj ETQq0 0 0 rgE	BT (Oyerloo	ck 10 Tf 50 3
85	Nuovi dati sui Coleotteri Tenebrionidi della città di Roma (Coleoptera Tenebrionidae). Bollettino Della Società Entomologica Italiana, 2014, , 137-142.	0.1	0
86	Cultural Erosion of Balinese Indigenous Knowledge of Food and Nutraceutical Plants. Economic Botany, 2014, 68, 426-437.	0.8	57
87	A Few Good Reasons Why Species-Area Relationships Do Not Work for Parasites. BioMed Research International, 2014, 2014, 1-5.	0.9	13
88	Form, function and evolutionary significance of stridulatory organs in ant nest beetles (Coleoptera:) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
89	Relations between Species Rarity, Vulnerability, and Range Contraction for a Beetle Group in a Densely Populated Region in the Mediterranean Biodiversity Hotspot. Conservation Biology, 2014, 28, 169-176.	2.4	8
90	Tenebrionid beetle distributional patterns in Italy: multiple colonisation trajectories in a biogeographical crossroad. Insect Conservation and Diversity, 2014, 7, 144-160.	1.4	17

#	Article	IF	Citations
91	On the methods to assess significance in nestedness analyses. Theory in Biosciences, 2014, 133, 179-186.	0.6	32
92	Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity. Journal of Biogeography, 2014, 41, 1639-1650.	1.4	45
93	Parasitic worms: how many really?. International Journal for Parasitology, 2014, 44, 269-272.	1.3	22
94	Identification of Monogenea made easier: a new statistical procedure for an automatic selection of diagnostic linear measurements in closely related species. Journal of Zoological Systematics and Evolutionary Research, 2014, 52, 95-99.	0.6	5
95	Tenebrionid beetles as proxy indicators of climate aridity in a Mediterranean area. Ecological Indicators, 2014, 38, 256-261.	2.6	9
96	Climatic correlates of body size in European tenebrionid beetles (Coleoptera: Tenebrionidae). Organisms Diversity and Evolution, 2014, 14, 215-224.	0.7	7
97	Island biogeography of urban insects: tenebrionid beetles from Rome tell a different story. Journal of Insect Conservation, 2014, 18, 729-735.	0.8	9
98	Disentangling the effects of available area, mid-domain constraints, and species environmental tolerance on the altitudinal distribution of tenebrionid beetles in a Mediterranean area. Biodiversity and Conservation, 2014, 23, 2545-2560.	1.2	22
99	A fast and unbiased procedure to randomize ecological binary matrices with fixed row and column totals. Nature Communications, 2014, 5, 4114.	5.8	152
100	Urban biodiversity hotspots are not related to the structure of green spaces: a case study of tenebrionid beetles from Rome, Italy. Urban Ecosystems, 2014, 17, 1033-1045.	1.1	17
101	Nestedness for Dummies (NeD): A User-Friendly Web Interface for Exploratory Nestedness Analysis. Journal of Statistical Software, 2014, 59, .	1.8	48
102	Assessing small island prioritisation using species rarity: the tenebrionid beetles of Italy. Journal of Integrated Coastal Zone Management, 2014, 14, 185-197.	0.2	4
103	Nuovi dati sui Coleotteri Tenebrionidi della città di Roma (Coleoptera Tenebrionidae). Bollettino Della Società Entomologica Italiana, 2014, 146, 137.	0.1	0
104	recluster: an unbiased clustering procedure for betaâ€diversity turnover. Ecography, 2013, 36, 1070-1075.	2.1	71
105	Faunistic knowledge and insect species loss in an urban area: the tenebrionid beetles of Rome. Journal of Insect Conservation, 2013, 17, 637-643.	0.8	9
106	Latitudinal trends in body length distributions of European darkling beetles (Tenebrionidae). Acta Oecologica, 2013, 53, 88-94.	0.5	8
107	A protocol to compare nestedness among submatrices. Population Ecology, 2013, 55, 227-239.	0.7	9
108	Longitudinal gradients in the phylogenetic community structure of European Tenebrionidae (Coleoptera) do not coincide with the major routes of postglacial colonization. Ecography, 2013, 36, 1106-1116.	2.1	18

#	Article	IF	CITATIONS
109	Fish parasites resolve the paradox of missing coextinctions. Nature Communications, 2013, 4, 1718.	5.8	41
110	Species distribution, ecology, abundance, body size and phylogeny originate interrelated rarity patterns at regional scale. Journal of Zoological Systematics and Evolutionary Research, 2013, 51, 279-286.	0.6	20
111	Should we correct rarity measures for body size to evaluate arthropod vulnerability? Insights from Mediterranean tenebrionid beetles. Biodiversity and Conservation, 2013, 22, 2805-2819.	1.2	5
112	Species ecological preferences predict extinction risk in urban tenebrionid beetle guilds. Animal Biology, 2013, 63, 93-106.	0.6	14
113	Evaluating Alpha and Beta Taxonomy in Ant-Nest Beetles (Coleoptera, Carabidae, Paussini). Psyche: Journal of Entomology, 2013, 2013, 1-10.	0.4	1
114	Integrating Landscape Disturbance and Indicator Species in Conservation Studies. PLoS ONE, 2013, 8, e63294.	1.1	57
115	I COLEOTTERI TENEBRIONIDI DI ROMA (Coleoptera, Tenebrionidae). Fragmenta Entomologica, 2013, 45, 87.	0.4	7
116	Variation in zoogeographical composition along an elevational gradient: the tenebrionid beetles of Latium (Central Italy). Entomologia, 2013, , e6.	1.0	2
117	Measuring insect rarity: practical issues, pragmatic approaches. Journal of Insect Biodiversity, 2013, 1, 1.	0.1	8
118	Regional Insect Inventories Require Long Time, Extensive Spatial Sampling and Good Will. PLoS ONE, 2013, 8, e62118.	1,1	34
119	Behavior ofPaussus favieri(Coleoptera, Carabidae, Paussini): A Myrmecophilous Beetle Associated withPheidole pallidula(Hymenoptera, Formicidae). Psyche: Journal of Entomology, 2012, 2012, 1-9.	0.4	17
120	Environmental tuning of an insect ensemble: The tenebrionid beetles inhabiting a Mediterranean coastal dune zonation. Comptes Rendus - Biologies, 2012, 335, 708-711.	0.1	11
121	Patterns of beta diversity in riparian ground beetle assemblages (Coleoptera Carabidae): A case study in the River Aniene (Central Italy). Italian Journal of Zoology, 2012, 79, 136-150.	0.6	7
122	Species-area relationships underestimate extinction rates. Acta Oecologica, 2012, 40, 27-30.	0.5	28
123	Drivers of species richness in European Tenebrionidae (Coleoptera). Acta Oecologica, 2012, 43, 22-28.	0.5	15
124	Use of Arthropod Rarity for Area Prioritisation: Insights from the Azorean Islands. PLoS ONE, 2012, 7, e33995.	1.1	31
125	Species richness and turnover patterns in European tenebrionid beetles. Insect Conservation and Diversity, 2012, 5, 331-345.	1.4	31
126	Spatial distributions of European Tenebrionidae point to multiple postglacial colonization trajectories. Biological Journal of the Linnean Society, 2012, 105, 318-329.	0.7	36

#	Article	IF	CITATIONS
127	Tackling the taxonomic impediment: a global assessment for ant-nest beetle diversity (Coleoptera:) Tj ETQq1 1 0.	784314 rg 0.7	BT /Overlock
128	Biogeographical kinetics on an island volcano (Capelinhos, Azores): fast colonisation rates and dominance of arthropod exotic species. Insect Conservation and Diversity, 2012, 5, 358-366.	1.4	5
129	Use of Cross-Taxon Congruence for Hotspot Identification at a Regional Scale. PLoS ONE, 2012, 7, e40018.	1.1	21
130	Global-Scale Relationships between Colonization Ability and Range Size in Marine and Freshwater Fish. PLoS ONE, 2012, 7, e49465.	1.1	27
131	Insect extinction by urbanization: A long term study in Rome. Biological Conservation, 2011, 144, 370-375.	1.9	100
132	Conserving organisms over large regions requires multi-taxa indicators: One taxon's diversity-vacant area is another taxon's diversity zone. Biological Conservation, 2011, 144, 1690-1701.	1.9	21
133	Influence of island geography, age and landscape on species composition in different animal groups. Journal of Biogeography, 2011, 38, 1318-1329.	1.4	18
134	The generalism-specialism debate: the role of generalists in the life and death of species. Biological Journal of the Linnean Society, 2011, 104, 725-737.	0.7	79
135	Insect rarity, extinction and conservation in urban Rome (Italy): a 120-year-long study of tenebrionid beetles. Insect Conservation and Diversity, 2011, 4, 307-315.	1.4	35
136	Biogeography of tenebrionid beetles (Coleoptera: Tenebrionidae) in the circum-Sicilian islands (Italy,) Tj ETQq0 0 0 Entomology, 2011, 108, 659-672.	O rgBT /Ove 1.2	erlock 10 Tf 10
137	The influence of geographical and ecological factors on island beta diversity patterns. Journal of Biogeography, 2010, 37, 1061-1070.	1.4	55
138	Effects of fire on tenebrionid communities of a Pinus pinea plantation: a case study in a Mediterranean site. Biodiversity and Conservation, 2010, 19, 1237-1250.	1.2	32
139	Biotope prioritisation in the Central Apennines (Italy): species rarity and cross-taxon congruence. Biodiversity and Conservation, 2010, 19, 3413-3429.	1.2	25
140	Use of insect rarity for biotope prioritisation: the tenebrionid beetles of the Central Apennines (Italy). Journal of Insect Conservation, 2010, 14, 367-378.	0.8	32
141	Biogeographical kinetics on mainland and island volcanoes. Journal of Biogeography, 2010, 37, 2158-2168.	1.4	3
142	The use of cumulative area curves in biological conservation: A cautionary note. Acta Oecologica, 2010, 36, 255-258.	0.5	16
143	Influence of Recent Geography and Paleogeography on the Structure of Reptile Communities in a Land-Bridge Archipelago. Journal of Herpetology, 2010, 44, 242-252.	0.2	23
144	On the general dynamic model of oceanic island biogeography. Journal of Biogeography, 2009, 36, 1100-1110.	1.4	62

#	Article	IF	CITATIONS
145	Assessing priority areas by imperilled species: insights from the European butterflies. Animal Conservation, 2009, 12, 313-320.	1.5	21
146	Both Recent and Pleistocene geography determine animal distributional patterns in the Tuscan Archipelago. Journal of Zoology, 2009, 277, 291-301.	0.8	39
147	Faunal patterns in tenebrionids (Coleoptera: Tenebrionidae) on the Tuscan Islands: The dominance of paleogeography over Recent geography. European Journal of Entomology, 2009, 106, 415-423.	1.2	21
148	A multidimensional characterization of rarity applied to the Aegean tenebrionid beetles (Coleoptera) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 27
149	Hovenkamp's ostracized vicariance analysis: testing new methods of historical biogeography. Cladistics, 2008, 24, 611-622.	1.5	10
150	How Island Geography and Shape may Influence Species Rarity and Biodiversity Loss in a Relict Fauna: A Case Study of Mediterranean Beetles. The Open Conservation Biology Journal, 2008, 2, 11-20.	1.0	7
151	Are planar areas adequate for the species–area relationship?. Italian Journal of Zoology, 2007, 74, 259-264.	0.6	4
152	Non-randomness in the species?area relationship: testing the underlying mechanisms. Oikos, 2007, 116, 678-689.	1.2	2
153	Historical relationships of African mountains based on cladistic analysis of distributions and endemism of flightless insects. African Entomology, 2007, 15, 340-355.	0.6	17
154	Nonâ€randomness in the species–area relationship: testing the underlying mechanisms. Oikos, 2007, 116, 678-689.	1.2	26
155	Levels of endemism are not necessarily biased by the coâ€presence of species with different range sizes: a case study of Vilenkin and Chikatunov's models. Journal of Biogeography, 2007, 34, 994-1007.	1.4	19
156	A statistical method for idiographic analyses in biogeographical research. Diversity and Distributions, 2007, 13, 836-844.	1.9	5
157	To Fit or Not to Fit? A Poorly Fitting Procedure Produces Inconsistent Results When the Species–Area Relationship is used to Locate Hotspots. Biodiversity and Conservation, 2007, 16, 2531-2538.	1.2	55
158	Pupal morphology in the subfamily Paussinae (Coleoptera: Carabidae). Revue Suisse De Zoologie, 2007, 114, 33-48.	0.1	7
159	A multidimensional characterization of rarity applied to the Aegean tenebrionid beetles (Coleoptera) Tj ETQq $1\ 1$	0.784314	rgBT /Overlo
160	SPATIAL VARIATIONS IN RARITY IN THE AEGEAN TENEBRIONID BEETLES (Coleoptera, Tenebrionidae). Fragmenta Entomologica, 2006, 38, 227.	0.4	6
161	Detecting Biodiversity Hotspots by Species-Area Relationships: a Case Study of Mediterranean Beetles. Conservation Biology, 2006, 20, 1169-1180.	2.4	71
162	A new method to identify important conservation areas applied to the butterflies of the Aegean Islands (Greece). Animal Conservation, 2006, 9, 75-83.	1.5	57

#	Article	IF	CITATIONS
163	Testing the latitudinal gradient: a narrowâ€scale analysis of tenebrionid richness (Coleoptera,) Tj ETQq1 1 0.7843	314 rgBT /	Overlock 10
164	A biogeographical analysis of the tenebrionid beetles (Coleoptera, Tenebrionidae) of the island of Thasos in the context of the Aegean Islands (Greece). Journal of Natural History, 2005, 39, 3919-3949.	0.2	38
165	Comparative analysis of species diversity of Isopoda Oniscidea and Collembola communities in burnt and unburnt habitats in central Italy. Italian Journal of Zoology, 2005, 72, 127-140.	0.6	21
166	A simple method to fit geometric series and broken stick models in community ecology and island biogeography. Acta Oecologica, 2005, 28, 199-205.	0.5	63
167	Review of competing hypotheses of phylogenetic relationships of Paussinae (Coleoptera: Carabidae) based on larval characters. Systematic Entomology, 2003, 28, 509-537.	1.7	33
168	Ecological and historical factors affecting carabid and tenebrionid communities (Coleoptera) Tj ETQq0 0 0 rgBT /0	Overlock 1	.0 Tf 50 542 1
169	Flightlessness in psammophilous beetles inhabiting a Mediterranean coastal area: ecological and biogeographical implications. Biogeographia, 2002, 23, .	0.3	5
170	The Tenebrionidae (Coleoptera) of a Tyrrhenian coastal area: diversity and zoogeographical composition. Biogeographia, 2002, 23, .	0.3	5
171	Biogeography of the tenebrionid beetles (Coleoptera, Tenebrionidae) on the Aegean Islands (Greece). Journal of Biogeography, 2002, 29, 49-67.	1.4	125
172	Spatial and seasonal organisation of a darkling beetle (Coleoptera, Tenebrionidae) community inhabiting a Mediterranean coastal dune system. Italian Journal of Zoology, 2001, 68, 207-214.	0.6	19
173	Levels of endemism in the Aegean Tenebrionids (Coleoptera, Tenebrionidae). Biogeographia, 2000, 21, .	0.3	0
174	The zoogeographical composition and distribution of the Anatolian Pimeliini (Coleoptera,) Tj ETQq0 0 0 rgBT /Ov	erlock 10 ⁻	Tf 50 302 Td
175	Dispersal, vicariance and refuges in the Anatolian Pimeliinae (Coleoptera, Tenebrionidae): remarks on some biogeographical tenets. Biogeographia, 2000, 21, .	0.3	9
176	Darkling beetle communities in two geologically contrasting biotopes: testing biodiversity patterns by microsite comparisons. Biological Journal of the Linnean Society, 0, 98, 787-793.	0.7	15
177	Niche partitioning in tenebrionid species (Coleoptera: Tenebrionidae) inhabiting Mediterranean coastal dunes. European Journal of Entomology, 0, 113, 462-468.	1.2	7