Michael M Hoffman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4558193/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489, 57-74.	13.7	15,516
2	Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 2004, 432, 695-716.	13.7	2,421
3	ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Research, 2012, 22, 1813-1831.	2.4	1,708
4	Opportunities and obstacles for deep learning in biology and medicine. Journal of the Royal Society Interface, 2018, 15, 20170387.	1.5	1,282
5	A User's Guide to the Encyclopedia of DNA Elements (ENCODE). PLoS Biology, 2011, 9, e1001046.	2.6	1,257
6	Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature, 2018, 563, 579-583.	13.7	624
7	Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nature Methods, 2012, 9, 473-476.	9.0	562
8	Integrative annotation of chromatin elements from ENCODE data. Nucleic Acids Research, 2013, 41, 827-841.	6.5	490
9	Comparative analysis of metazoan chromatin organization. Nature, 2014, 512, 449-452.	13.7	363
10	Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Information Fusion, 2019, 50, 71-91.	11.7	340
11	Transparency and reproducibility in artificial intelligence. Nature, 2020, 586, E14-E16.	13.7	233
12	Classification and interaction in random forests. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1690-1692.	3.3	150
13	Extending reference assembly models. Genome Biology, 2015, 16, 13.	3.8	139
14	AANT: the Amino Acid-Nucleotide Interaction Database. Nucleic Acids Research, 2004, 32, 174D-181.	6.5	120
15	Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Research, 2020, 30, 1060-1072.	2.4	109
16	Reproducibility standards for machine learning in the life sciences. Nature Methods, 2021, 18, 1132-1135.	9.0	96
17	Umap and Bismap: quantifying genome and methylome mappability. Nucleic Acids Research, 2018, 46, e120.	6.5	94
18	GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell Genomics. 2021. 1. 100029.	3.0	94

MICHAEL M HOFFMAN

#	Article	IF	CITATIONS
19	Joint annotation of chromatin state and chromatin conformation reveals relationships among domain types and identifies domains of cell-type-specific expression. Genome Research, 2015, 25, 544-557.	2.4	74
20	DNAmod: the DNA modification database. Journal of Cheminformatics, 2019, 11, 30.	2.8	53
21	Tumor-NaĀ ⁻ ve Multimodal Profiling of Circulating Tumor DNA in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2021, 27, 4230-4244.	3.2	53
22	A dynamic Bayesian network for identifying protein-binding footprints from single molecule-based sequencing data. Bioinformatics, 2010, 26, i334-i342.	1.8	43
23	Statistical Inference, Learning and Models in Big Data. International Statistical Review, 2016, 84, 371-389.	1.1	42
24	A unified encyclopedia of human functional DNA elements through fully automated annotation of 164 human cell types. Genome Biology, 2019, 20, 180.	3.8	37
25	Top considerations for creating bioinformatics software documentation. Briefings in Bioinformatics, 2018, 19, 693-699.	3.2	33
26	ChromNet: Learning the human chromatin network from all ENCODE ChIP-seq data. Genome Biology, 2016, 17, 82.	3.8	31
27	Segway 2.0: Gaussian mixture models and minibatch training. Bioinformatics, 2018, 34, 669-671.	1.8	31
28	Estimating the Neutral Rate of Nucleotide Substitution Using Introns. Molecular Biology and Evolution, 2006, 24, 522-531.	3.5	29
29	Sharing biological data: why, when, and how. FEBS Letters, 2021, 595, 847-863.	1.3	26
30	An effective model for natural selection in promoters. Genome Research, 2010, 20, 685-692.	2.4	24
31	The Genomedata format for storing large-scale functional genomics data. Bioinformatics, 2010, 26, 1458-1459.	1.8	21
32	Segmentation and genome annotation algorithms for identifying chromatin state and other genomic patterns. PLoS Computational Biology, 2021, 17, e1009423.	1.5	21
33	Exploratory analysis of genomic segmentations with Segtools. BMC Bioinformatics, 2011, 12, 415.	1.2	20
34	Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome. Genome Biology, 2022, 23, .	3.8	14
35	Assessing and assuring interoperability of a genomics file format. Bioinformatics, 2022, 38, 3327-3336.	1.8	3
36	Determining the epigenome using DNA alone. Nature Methods, 2015, 12, 191-192.	9.0	0

#	Article	IF	CITATIONS
37	Readers respond to Natureâ \in $^{ m Ms}$ s Editorial on historical monuments. Nature, 0, , .	13.7	0