Ying-hui Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4558103/publications.pdf

Version: 2024-02-01

257450 197818 2,489 67 24 49 citations g-index h-index papers 70 70 70 3368 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<scp>Crystallineâ€State</scp> Solvent: <scp>Metalâ€Organic</scp> Frameworks as a Platform for Intercepting <scp>Aggregationâ€Caused</scp> Quenching. Chinese Journal of Chemistry, 2022, 40, 589-596.	4.9	9
2	Two-Dimensional Metal–Organic Framework with Ultrahigh Water Stability for Separation of Acetylene from Carbon Dioxide and Ethylene. ACS Applied Materials & Interfaces, 2022, 14, 33429-33437.	8.0	29
3	Improving iodine adsorption performance of porous organic polymers by rational decoration with nitrogen heterocycle. Journal of Applied Polymer Science, 2021, 138, 50054.	2.6	9
4	Propane-Trapping Ultramicroporous Metal–Organic Framework in the Low-Pressure Area toward the Purification of Propylene. ACS Applied Materials & Samp; Interfaces, 2021, 13, 35990-35996.	8.0	39
5	In-situ synthesized porphyrin polymer/TiO2 composites as high-performance Z-scheme photocatalysts for CO2 conversion. Journal of Colloid and Interface Science, 2021, 596, 342-351.	9.4	21
6	Efficient Purification of Ethylene from C ₂ Hydrocarbons with an C ₂ H ₆ /C ₂ -Selective Metal–Organic Framework. ACS Applied Materials & Samp; Interfaces, 2021, 13, 962-969.	8.0	69
7	Microporous Metal–Organic Framework with a Completely Reversed Adsorption Relationship for C ₂ Hydrocarbons at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 6105-6111.	8.0	63
8	Synergetic effect of hollowrization and sulfonation on improving the photocatalytic performance of covalent porphyrin polymers in the reduction of CO2. Materials Chemistry Frontiers, 2020, 4, 2754-2761.	5 . 9	10
9	A covalent organic framework exhibiting amphiphilic selective adsorption toward ionic organic dyes tuned by pH value. European Polymer Journal, 2020, 133, 109764.	5.4	38
10	Cleanliness prediction of rusty iron in laser cleaning using convolutional neural networks. Applied Physics A: Materials Science and Processing, 2020, 126 , 1 .	2.3	6
11	Amorphous N-rich organic polymer/carbon nanotube composites as effective anode material for advanced lithium ion batteries. SN Applied Sciences, 2020, 2, 1 .	2.9	4
12	A zinc(II) MOF based on secondary building units of infinite wavy-shaped chain exhibiting obvious luminescent sense effects. Chinese Chemical Letters, 2019, 30, 499-501.	9.0	10
13	A water-stable lanthanide-coordination polymer with free Lewis site for fluorescent sensing of Fe3+. Chinese Chemical Letters, 2019, 30, 75-78.	9.0	19
14	Benchmark selectivity <i>p</i> -xylene separation by a non-porous molecular solid through liquid or vapor extraction. Chemical Science, 2019, 10, 8850-8854.	7.4	29
15	Innenrücktitelbild: Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation (Angew. Chem. 39/2019). Angewandte Chemie, 2019, 131, 14135-14135.	2.0	1
16	Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie - International Edition, 2019, 58, 15742-15746.	13.8	121
17	Stable 2D Heteroporous Covalent Organic Frameworks for Efficient Ionic Conduction. Angewandte Chemie, 2019, 131, 15889-15893.	2.0	22
18	Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie, 2019, 131, 14028-14034.	2.0	23

#	Article	IF	Citations
19	Carbon Layer Coated Ni ₃ S ₂ /MoS ₂ Nanohybrids as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ChemElectroChem, 2019, 6, 5603-5609.	3.4	22
20	Engineering Donor–Acceptor Heterostructure Metal–Organic Framework Crystals for Photonic Logic Computation. Angewandte Chemie - International Edition, 2019, 58, 13890-13896.	13.8	108
21	A Hexanuclear Cadmium Metal–Organic Framework Exhibiting Dual Mechanisms to Trigger a Fluorescenceâ€Quenching Response toward Iron(III) Ions. European Journal of Inorganic Chemistry, 2018, 2018, 1068-1072.	2.0	13
22	A coordination compound featuring a supramolecular hydrogen-bonding network for proton conduction. Chinese Chemical Letters, 2018, 29, 336-338.	9.0	23
23	New Coordination Complexes Based on the 2,6-bis[1-(Phenylimino)ethyl] Pyridine Ligand: Effective Catalysts for the Synthesis of Propylene Carbonates from Carbon Dioxide and Epoxides. Molecules, 2018, 23, 2304.	3.8	2
24	Crystal Structure and Photoluminescence Properties of Two Barium(II) MOFs. Chemical Research in Chinese Universities, 2018, 34, 700-704.	2.6	6
25	Sulfonated Hollow Covalent Organic Polymer: Highlyâ€Selective Adsorption toward Cationic Organic Dyes over Anionic Ones in Aqueous Solution. Chinese Journal of Chemistry, 2018, 36, 826-830.	4.9	14
26	Hollow porous organic polymer: High-performance adsorption for organic dye in aqueous solution. Journal of Polymer Science Part A, 2017, 55, 1329-1337.	2.3	28
27	Improving the Stability and Gas Adsorption Performance of Acylamide Group Functionalized Zinc Metal–Organic Frameworks through Coordination Group Optimization. Crystal Growth and Design, 2017, 17, 2584-2588.	3.0	15
28	A Sr ²⁺ -metal–organic framework with high chemical stability: synthesis, crystal structure and photoluminescence property. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160026.	3.4	10
29	Bimetallic metal–organic framework derived Co ₃ O ₄ –CoFe ₂ O ₄ composites with different Fe/Co molar ratios as anode materials for lithium ion batteries. Dalton Transactions, 2017, 46, 15947-15953.	3.3	43
30	Tuning the adsorption and fluorescence properties of aminalâ€linked porous organic polymers through Nâ€heterocyclic group decoration. Journal of Polymer Science Part A, 2016, 54, 1724-1730.	2.3	42
31	A new Co(<scp>ii</scp>) metal–organic framework with enhanced CO ₂ adsorption and separation performance. Inorganic Chemistry Frontiers, 2016, 3, 1510-1515.	6.0	27
32	Temperature-Related Synthesis of Two Anionic Metal–Organic Frameworks with Distinct Performance in Organic Dye Adsorption. Crystal Growth and Design, 2016, 16, 5593-5597.	3.0	53
33	A Water-Stable Metal–Organic Framework with a Double-Helical Structure for Fluorescent Sensing. Inorganic Chemistry, 2016, 55, 7326-7328.	4.0	83
34	Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2016, 4, 18621-18627.	10.3	188
35	Improving the Performance of a Ternary Prussian Blue Analogue as Cathode of Lithium Battery via Annealing Treatment. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2016, 642, 289-293.	1.2	12
36	High-performance fluorescence sensing of lanthanum ions (La ³⁺) by a polydentate pyridyl-based quinoxaline derivative. Dalton Transactions, 2016, 45, 10836-10841.	3.3	17

3

#	Article	IF	CITATIONS
37	A novel gene network analysis in liver tissues of diabetic rats in response to resistant starch treatment. SpringerPlus, 2015, 4, 110.	1.2	4
38	Modulated preparation and structural diversification of metalâ \in organic frameworks based on 4,4â \in 2,4â \in 3-(1H-imidazole-2,4,5-triyl)tripyridine ligand. Inorganica Chimica Acta, 2015, 427, 240-247.	2.4	5
39	A unique "cage-in-cage―metal–organic framework based on nested cages from interpenetrated networks. CrystEngComm, 2015, 17, 5884-5888.	2.6	15
40	Syntheses, structures, luminescent and magnetic properties of two coordination polymers based on a flexible multidentate carboxylate ligand. Chinese Chemical Letters, 2015, 26, 499-503.	9.0	11
41	Topological modulation of metal–thiadiazole dicarboxylate coordination polymers through auxiliary ligand alteration. CrystEngComm, 2015, 17, 4301-4308.	2.6	10
42	A triphenylene-based conjugated microporous polymer: construction, gas adsorption, and fluorescence detection properties. RSC Advances, 2015, 5, 15350-15353.	3.6	14
43	MOF-Derived Porous Co ₃ O ₄ Hollow Tetrahedra with Excellent Performance as Anode Materials for Lithium-Ion Batteries. Inorganic Chemistry, 2015, 54, 8159-8161.	4.0	142
44	A high-performance "sweeper―for toxic cationic herbicides: an anionic metal–organic framework with a tetrapodal cage. Chemical Communications, 2015, 51, 17439-17442.	4.1	72
45	Ratiometric fluorescence detection of fluoride ion by indole-based receptor. Talanta, 2015, 131, 597-602.	5 . 5	18
46	A Manganese(II) Coordination Polymer with the Ligands ÂAzide and Picolinate: Synthesis, Structure, and Magnetic Properties. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 1555-1558.	1.2	2
47	Four new metal–organic coordination polymers with non-coordinating biphenyl groups: Synthesis, characterization, magnetic and luminescent properties. Inorganica Chimica Acta, 2014, 411, 30-34.	2.4	4
48	A Mixed Molecular Building Block Strategy for the Design of Nested Polyhedron Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2014, 53, 837-841.	13.8	189
49	Synthesis and Crystal Structure of Three Alkaline Earth Coordination Compounds Based on 1,2,5-Thiadiazole-3,4-Dicarboxylic Acid Ligand. Journal of Chemical Crystallography, 2014, 44, 443-449.	1.1	1
50	Synthesis, structure and magnetic properties of manganese(II) coordination polymer with azido and zwitterionic dicarboxylate ligand. Chinese Chemical Letters, 2014, 25, 854-858.	9.0	16
51	A Cu(i) metal–organic framework with 4-fold helical channels for sensing anions. Chemical Science, 2013, 4, 3678.	7.4	251
52	Reinterpretation of metamorphic age of the Hengshan Complex, North China Craton. Science Bulletin, 2013, 58, 4300-4307.	1.7	77
53	Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities. Scientific Reports, 2013, 3, 3312.	3.3	136
54	A new ditopic ratiometric receptor for detecting zinc and fluoride ions in living cells. Analyst, The, 2013, 138, 5486.	3.5	51

#	Article	IF	CITATIONS
55	Edge-directed assembly of a 3D 2p–3d heterometallic metal–organic framework based on a cubic Co8(TzDC)12 cage. CrystEngComm, 2013, 15, 9344.	2.6	15
56	A $\hat{1}$ / $\!\!4$ 3-OH \hat{a} ° bridged two-dimensional zinc(II) coordination polymer based on an anthryl ligand: Synthesis, characterization and luminescent properties. Chinese Chemical Letters, 2013, 24, 270-272.	9.0	3
57	Theoretical study of electronic structure and absorption spectra of diacid and zinc species of series of meso-phenylporphyrins. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2011, 79, 1449-1460.	3.9	11
58	Experimental and theoretical study on vibrational spectra of nickel and zinc complexes of 5,10-diphenylporphyrin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 499-506.	3.9	5
59	Structural parameters and vibrational spectra of a series of zinc meso-phenylporphyrins: A DFT and experimental study. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 75, 880-890.	3.9	25
60	Synthesis, spectral and theoretical studies on axial coordination of dinuclear Salen zinc(II) complexes. Journal of Coordination Chemistry, 2007, 60, 2485-2497.	2.2	3
61	Molecular Recognition of Porphyrin-Salen Compound towardsN-Heterocyclic-guests. Chinese Journal of Chemistry, 2006, 24, 1031-1036.	4.9	2
62	Synthesis of chiral SalenZn(II) and its coordination with imidazole derivatives and amino acid ester derivatives. Journal of Coordination Chemistry, 2006, 59, 585-595.	2.2	0
63	DFT study on the geometric, electronic structure and Raman spectra of 5,15-diphenylporphine. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 62, 83-91.	3.9	12
64	DFT study on the influence of meso-phenyl substitution on the geometric, electronic structure and vibrational spectra of free base porphyrin. Chemical Physics, 2005, 315, 201-213.	1.9	70
65	Study on the Molecular Recognition of $\hat{l}_{\pm}, \hat{l}_{\pm}, \hat{l}_{$	4.9	9
66	Resonance Raman Spectra and Excited-State Structure of Aggregated Tetrakis(4-sulfonatophenyl)porphyrin Diacid. Journal of Physical Chemistry A, 2001, 105, 3981-3988.	2.5	68
67	A Sulfonated Porphyrin Polymer/P25m Composite for Highly Selective Photocatalytic Conversion of CO2 into CH4. Catalysis Letters, 0, , 1.	2.6	2