List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4557706/publications.pdf Version: 2024-02-01

MING-KULWANG

#	Article	IF	CITATIONS
1	Preventing inhomogeneous elemental distribution and phase segregation in mixed Pb-Sn inorganic perovskites via incorporating PbS quantum dots. Journal of Energy Chemistry, 2022, 65, 179-185.	7.1	13
2	Recent progress in inorganic tin perovskite solar cells. Materials Today Energy, 2022, 23, 100891.	2.5	16
3	Constructing two-dimensional heterojunction through decorating covalent organic framework with MoS2 for enhanced photoelectrochemical water oxidation. Journal of Environmental Chemical Engineering, 2022, 10, 106900.	3.3	6
4	Over 8% efficient CsSnI ₃ -based mesoporous perovskite solar cells enabled by two-step thermal annealing and surface cationic coordination dual treatment. Journal of Materials Chemistry A, 2022, 10, 3642-3649.	5.2	35
5	CoTe ₂ –NiTe ₂ heterojunction directly grown on CoNi alloy foam for efficient oxygen evolution reaction. Inorganic Chemistry Frontiers, 2022, 9, 332-342.	3.0	14
6	A stable self-powered ultraviolet photodetector using CH ₃ NH ₃ PbCl ₃ with weak-light detection capacity under working conditions. Journal of Materials Chemistry C, 2022, 10, 7147-7153.	2.7	8
7	Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17, 598-605.	15.6	121
8	2D Materials as Electron Transport Layer for Lowâ€Temperature Solutionâ€Processed Perovskite Solar Cells. Solar Rrl, 2021, 5, 2000566.	3.1	12
9	ls the strain responsible to instability of inorganic perovskites and their photovoltaic devices?. Materials Today Energy, 2021, 19, 100601.	2.5	17
10	Efficient Activation and Electroreduction of Carbon Dioxide on an Electrocatalyst Cadmium Carbonate. ACS Applied Energy Materials, 2021, 4, 2073-2080.	2.5	14
11	Minimizing energy loss in two-dimensional tin halide perovskite solar cells—A perspective. APL Materials, 2021, 9, .	2.2	13
12	Interface engineering for high-efficiency perovskite solar cells. Journal of Applied Physics, 2021, 129, .	1.1	38
13	Fully Inorganic CsSnI ₃ Mesoporous Perovskite Solar Cells with High Efficiency and Stability via Coadditive Engineering. Solar Rrl, 2021, 5, 2100069.	3.1	29
14	Realizing Compact Lithium Deposition via Elaborative Nucleation and Growth Regulation for Stable Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34248-34257.	4.0	1
15	Efficient and Stable Large-Area Perovskite Solar Cells with Inorganic Perovskite/Carbon Quantum Dot-Graded Heterojunction. Research, 2021, 2021, 9845067.	2.8	9
16	Effect of a Cocatalyst on a Photoanode in Water Splitting: A Study of Scanning Electrochemical Microscopy. Analytical Chemistry, 2021, 93, 12221-12229.	3.2	17
17	The effect of defects in tin-based perovskites and their photovoltaic devices. Materials Today Physics, 2021, 21, 100513.	2.9	17
18	Two-dimensional hetero-nanostructured electrocatalyst of Ni/NiFe-layered double oxide for highly efficient hydrogen evolution reaction in alkaline medium. Chemical Engineering Journal, 2021, 426, 131827.	6.6	42

#	Article	IF	CITATIONS
19	Modulated growth of high-quality CsPbI ₃ perovskite film using a molybdenum modified SnO ₂ layer for highly efficient solar cells. Journal of Materials Chemistry A, 2021, 9, 25567-25575.	5.2	25
20	Strontiumâ€Đoped CsPbI ₃ Quantum Dots as an Interfacial Layer for Efficient Inorganic Perovskite Solar Cells. Solar Rrl, 2021, 5, .	3.1	12
21	Controlling Quantum-Well Width Distribution and Crystal Orientation in Two-Dimensional Tin Halide Perovskites via a Strong Interlayer Electrostatic Interaction. ACS Applied Materials & Interfaces, 2021, 13, 49907-49915.	4.0	13
22	Bismuth selenide nanocrystalline array electrodes for high-performance sodium-ion batteries. Applied Materials Today, 2020, 18, 100455.	2.3	11
23	Interconnected SnO ₂ Nanocrystals Electron Transport Layer for Highly Efficient Flexible Perovskite Solar Cells. Solar Rrl, 2020, 4, 1900229.	3.1	31
24	Stability Issue of Perovskite Solar Cells under Realâ€World Operating Conditions. Energy Technology, 2020, 8, 1900744.	1.8	25
25	Advances in nanostructured homojunction solar cells and photovoltaic materials. Materials Science in Semiconductor Processing, 2020, 107, 104810.	1.9	29
26	Effective Magnetic Field Regulation of the Radical Pair Spin States in Electrocatalytic CO ₂ Reduction. Journal of Physical Chemistry Letters, 2020, 11, 48-53.	2.1	54
27	Stabilization of Inorganic CsPb _{0.5} Sn _{0.5} I ₂ Br Perovskite Compounds by Antioxidant Tea Polyphenol. Solar Rrl, 2020, 4, 1900457.	3.1	43
28	Interfacial engineering of bismuth with reduced graphene oxide hybrid for improving CO2 electroreduction performance. Electrochimica Acta, 2020, 357, 136840.	2.6	17
29	Stable and efficient full-printable solar cells using inorganic metal oxide framework and inorganic perovskites. Applied Materials Today, 2020, 20, 100644.	2.3	10
30	AgBi3I10 rudorffite for photovoltaic application. Solar Energy, 2020, 206, 436-442.	2.9	21
31	Controlling layered Ruddlesden–Popper perovskites <i>via</i> solvent additives. Nanoscale, 2020, 12, 7330-7338.	2.8	9
32	Investigation on In–TiO2 composites as highly efficient elecctrocatalyst for CO2 reduction. Electrochimica Acta, 2020, 340, 135948.	2.6	11
33	Surfactant-Modified Hydrothermal Synthesis of Ca-Doped CuCoO ₂ Nanosheets with Abundant Active Sites for Enhanced Electrocatalytic Oxygen Evolution. Inorganic Chemistry, 2020, 59, 9889-9899.	1.9	23
34	Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 2020, 14, s2-s16.	1.3	265
35	In Situ Growth of Ru Nanoparticles on (Fe,Ni)(OH) ₂ to Boost Hydrogen Evolution Activity at High Current Density in Alkaline Media. Small Methods, 2020, 4, 1900796.	4.6	82
36	Efficient CsSnl ₃ -based inorganic perovskite solar cells based on a mesoscopic metal oxide framework <i>via</i> incorporating a donor element. Journal of Materials Chemistry A, 2020, 8, 4118-4124.	5.2	75

#	Article	IF	CITATIONS
37	Regulating the electronic configuration of ruthenium nanoparticles via coupling cobalt phosphide for hydrogen evolution in alkaline media. Materials Today Physics, 2020, 12, 100182.	2.9	27
38	Black phosphorus quantum dots in inorganic perovskite thin films for efficient photovoltaic application. Science Advances, 2020, 6, eaay5661.	4.7	95
39	Nanostructured Ni ₂ SeS on Porous-Carbon Skeletons as Highly Efficient Electrocatalyst for Hydrogen Evolution in Acidic Medium. Inorganic Chemistry, 2020, 59, 6018-6025.	1.9	13
40	Sn/Pb binary metal inorganic perovskite: a true material worthy of trust for efficient and stable photovoltaic application. Science Bulletin, 2020, 65, 1330-1333.	4.3	11
41	Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Materials Horizons, 2020, 7, 2276-2291.	6.4	66
42	Novel donor-acceptor-donor structured small molecular hole transporting materials for planar perovskite solar cells. Journal of Energy Chemistry, 2019, 32, 85-92.	7.1	23
43	Postnatal differential expression of chemoreceptors of free fatty acids along the gastrointestinal tract of supplemental feeding v. grazing kid goats. Animal, 2019, 13, 509-517.	1.3	3
44	CsPb(I Br1â^')3 solar cells. Science Bulletin, 2019, 64, 1532-1539.	4.3	114
45	A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate. Applied Catalysis B: Environmental, 2019, 259, 118040.	10.8	59
46	Modulation of Acceptor Position in Organic Sensitizers: The Optimization of Intramolecular and Interfacial Charge Transfer Processes. ACS Applied Materials & Interfaces, 2019, 11, 27648-27657.	4.0	20
47	Toward Phase Stability: Dion–Jacobson Layered Perovskite for Solar Cells. ACS Energy Letters, 2019, 4, 2960-2974.	8.8	124
48	Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Science Bulletin, 2019, 64, 1743-1746.	4.3	51
49	Red-emitting CsPbBrI2/PbSe heterojunction nanocrystals with high luminescent efficiency and stability for bright light-emitting diodes. Nano Energy, 2019, 66, 104142.	8.2	40
50	Design strategies in metal chalcogenides anode materials for high-performance sodium-ion battery. Materials Today Energy, 2019, 12, 114-128.	2.5	59
51	Iron incorporation affecting the structure and boosting catalytic activity of Cox-Fey-P for efficient hydrogen evolution. Applied Surface Science, 2019, 478, 103-109.	3.1	4
52	Hybridizing NiCo ₂ O ₄ and Amorphous Ni _{<i>x</i>} Co _{<i>y</i>} Layered Double Hydroxides with Remarkably Improved Activity toward Efficient Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2019, 7, 4784-4791	3.2	70
53	Will organic–inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications?. Nanoscale Advances, 2019, 1, 1276-1289.	2.2	130
54	Effect of the acceptor and alkyl length in benzotriazole-based donor-acceptor-donor type hole transport materials on the photovoltaic performance of PSCs. Dyes and Pigments, 2019, 164, 407-416.	2.0	28

#	Article	IF	CITATIONS
55	Reducing the surface recombination during light-driven water oxidation by core-shell BiVO4@Ni:FeOOH. Electrochimica Acta, 2019, 300, 77-84.	2.6	25
56	Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons, 2019, 6, 470-506.	6.4	493
57	Layered Ruddlesden–Popper Efficient Perovskite Solar Cells with Controlled Quantum and Dielectric Confinement Introduced via Doping. Advanced Functional Materials, 2019, 29, 1903293.	7.8	66
58	High-rate and stable iron phosphide nanorods anode for sodium-ion battery. Electrochimica Acta, 2019, 314, 142-150.	2.6	32
59	Enhancing stability of red perovskite nanocrystals through copper substitution for efficient light-emitting diodes. Nano Energy, 2019, 62, 434-441.	8.2	103
60	Surface modification of NiCo2Te4 nanoclusters: a highly efficient electrocatalyst for overall water-splitting in neutral solution. Applied Catalysis B: Environmental, 2019, 254, 424-431.	10.8	59
61	CsPbl _{2.69} Br _{0.31} solar cells from low-temperature fabrication. Materials Chemistry Frontiers, 2019, 3, 1139-1142.	3.2	19
62	Artificial photosynthesis of ethanol using type-II g-C3N4/ZnTe heterojunction in photoelectrochemical CO2 reduction system. Nano Energy, 2019, 60, 827-835.	8.2	126
63	Atomic-Scale Tailoring of Organic Cation of Layered Ruddlesden–Popper Perovskite Compounds. Journal of Physical Chemistry Letters, 2019, 10, 1813-1819.	2.1	55
64	Low-Temperature Stable α-Phase Inorganic Perovskite Compounds via Crystal Cross-Linking. Journal of Physical Chemistry Letters, 2019, 10, 200-205.	2.1	57
65	Promises and challenges of alloy-type and conversion-type anode materials for sodium–ion batteries. Materials Today Energy, 2019, 11, 46-60.	2.5	90
66	LPAR5, GNAT3 and partial amino acid transporters messenger RNA expression patterns in digestive tracts, metabolic organs and muscle tissues of growing goats. Animal, 2019, 13, 1394-1402.	1.3	1
67	Carbon–Oxygenâ€Bridged Ladderâ€Type Building Blocks for Highly Efficient Nonfullerene Acceptors. Advanced Materials, 2019, 31, e1804790.	11.1	139
68	20% Efficient Perovskite Solar Cells with 2D Electron Transporting Layer. Advanced Functional Materials, 2019, 29, 1805168.	7.8	67
69	Highly Efficient Hydrogen Production Using a Reformed Electrolysis System Driven by a Single Perovskite Solar Cell. ChemSusChem, 2019, 12, 434-440.	3.6	12
70	Dietary starch and rhubarb supplement increase ruminal dissolved hydrogen without altering rumen fermentation and methane emissions in goats. Animal, 2019, 13, 975-982.	1.3	9
71	Graphene oxide wrapped CH3NH3PbBr3 perovskite quantum dots hybrid for photoelectrochemical CO2 reduction in organic solvents. Applied Surface Science, 2019, 465, 607-613.	3.1	89
72	Hierarchical MnO ₂ Located on Carbon Nanotubes for Enhanced Electrochemical Performance. ChemElectroChem, 2018, 5, 1525-1531.	1.7	6

#	Article	IF	CITATIONS
73	Efficient carbon dots/NiFe-layered double hydroxide/BiVO4 photoanodes for photoelectrochemical water splitting. Applied Surface Science, 2018, 439, 1065-1071.	3.1	62
74	Engineering NiS/Ni ₂ P Heterostructures for Efficient Electrocatalytic Water Splitting. ACS Applied Materials & Interfaces, 2018, 10, 4689-4696.	4.0	312
75	Electronic modulation of transition metal phosphide <i>via</i> doping as efficient and pH-universal electrocatalysts for hydrogen evolution reaction. Chemical Science, 2018, 9, 1970-1975.	3.7	176
76	A catalyst based on copper-cadmium bimetal for electrochemical reduction of CO2 to CO with high faradaic efficiency. Electrochimica Acta, 2018, 271, 544-550.	2.6	49
77	Efficient Planar Perovskite Solar Cells with Improved Fill Factor via Interface Engineering with Graphene. Nano Letters, 2018, 18, 2442-2449.	4.5	195
78	Ultra-thin bacterial cellulose/poly(ethylenedioxythiophene) nanofibers paper electrodes for all-solid-state flexible supercapacitors. Electrochimica Acta, 2018, 271, 624-631.	2.6	41
79	Achieving ordered and stable binary metal perovskite via strain engineering. Nano Energy, 2018, 48, 117-127.	8.2	60
80	Organic hole-transporting materials for efficient perovskite solar cells. Materials Today Energy, 2018, 7, 208-220.	2.5	100
81	A New Method for Fitting Current–Voltage Curves of Planar Heterojunction Perovskite Solar Cells. Nano-Micro Letters, 2018, 10, 5.	14.4	102
82	Diketopyrrolopyrrole based D-Ï€-A-Ï€-D type small organic molecules as hole transporting materials for perovskite solar cells. Journal of Energy Chemistry, 2018, 27, 1175-1182.	7.1	13
83	Three-dimensional TiO2 nanowire@NiMoO4 ultrathin nanosheet core-shell arrays for lithium ion batteries. Applied Surface Science, 2018, 435, 641-648.	3.1	30
84	Enhancing photoelectrochemical water oxidation efficiency via self-catalyzed oxygen evolution: A case study on TiO2. Nano Energy, 2018, 44, 411-418.	8.2	43
85	Push-Pull Zinc Porphyrins as Light-Harvesters for Efficient Dye-Sensitized Solar Cells. Frontiers in Chemistry, 2018, 6, 541.	1.8	59
86	High Efficiency Non-fullerene Organic Tandem Photovoltaics Based on Ternary Blend Subcells. Nano Letters, 2018, 18, 7977-7984.	4.5	27
87	Highly Efficient Perovskite Solar Cells via Nickel Passivation. Advanced Functional Materials, 2018, 28, 1804286.	7.8	100
88	Investigation on Charge Carrier Recombination of Hybrid Organic–Inorganic Perovskites Doped with Aggregationâ€Induced Emission Luminogen under High Photon Flux Excitation. Advanced Optical Materials, 2018, 6, 1800221.	3.6	7
89	Highly Efficient Perovskite Solar Cells with Gradient Bilayer Electron Transport Materials. Nano Letters, 2018, 18, 3969-3977.	4.5	147
90	Coreâ€Shell Structured NiCo ₂ O ₄ @FeOOH Nanowire Arrays as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ChemCatChem, 2018, 10, 4119-4125.	1.8	34

#	Article	IF	CITATIONS
91	Cation-Assisted Restraint of a Wide Quantum Well and Interfacial Charge Accumulation in Two-Dimensional Perovskites. ACS Energy Letters, 2018, 3, 1815-1823.	8.8	22
92	Direct formation of I3- ions in organic cation solution for efficient perovskite solar cells. Solar Energy Materials and Solar Cells, 2018, 185, 111-116.	3.0	32
93	Sea coral-like NiCo ₂ O ₄ @(Ni, Co)OOH heterojunctions for enhancing overall water-splitting. Catalysis Science and Technology, 2018, 8, 4151-4158.	2.1	16
94	High Mobility Indium Oxide Electron Transport Layer for an Efficient Charge Extraction and Optimized Nanomorphology in Organic Photovoltaics. Nano Letters, 2018, 18, 5805-5811.	4.5	31
95	Large Magneto-Current Effect in the Electrochemical Detection of Oxalate in Aqueous Solution. Journal of Physical Chemistry C, 2018, 122, 19880-19885.	1.5	13
96	Phosphorus-doped TiO2-B nanowire arrays boosting robust pseudocapacitive properties for lithium storage. Journal of Power Sources, 2018, 396, 327-334.	4.0	43
97	Understanding the side-chain effects on A–D–A acceptors: in-plane and out-of-plane. Materials Chemistry Frontiers, 2018, 2, 1563-1567.	3.2	16
98	Support-dependent active species formation for CuO catalysts: Leading to efficient pollutant degradation in alkaline conditions. Journal of Hazardous Materials, 2017, 328, 56-62.	6.5	34
99	Exploring stability of formamidinium lead trihalide for solar cell application. Science Bulletin, 2017, 62, 249-255.	4.3	30
100	Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. Solar Energy, 2017, 144, 158-165.	2.9	63
101	Carbon Quantum Dots/TiO _{<i>x</i>} Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19%. Nano Letters, 2017, 17, 2328-2335.	4.5	211
102	Li4Ti5O12-TiO2 nanowire arrays constructed with stacked nanocrystals for high-rate lithium and sodium ion batteries. Journal of Power Sources, 2017, 344, 223-232.	4.0	61
103	A new strategy of preparing uniform graphitic carbon nitride films for photoelectrochemical application. Carbon, 2017, 117, 343-350.	5.4	68
104	Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates. Scientific Reports, 2017, 7, 46141.	1.6	71
105	Amino-functionalized conjugated polymer electron transport layers enhance the UV-photostability of planar heterojunction perovskite solar cells. Chemical Science, 2017, 8, 4587-4594.	3.7	57
106	Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite. Nano Energy, 2017, 36, 213-222.	8.2	100
107	Temperature Dependent Characteristics of Perovskite Solar Cells. ChemistrySelect, 2017, 2, 4469-4477.	0.7	24
108	Photoinitiation and Inhibition under Monochromatic Green Light for Storage of Colored 3D Images in Holographic Polymer-Dispersed Liquid Crystals. ACS Applied Materials & Interfaces, 2017, 9, 1810-1819.	4.0	69

#	Article	IF	CITATIONS
109	Nanostructured Nickel Cobaltite Antispinel as Bifunctional Electrocatalyst for Overall Water Splitting. Journal of Physical Chemistry C, 2017, 121, 25888-25897.	1.5	39
110	Enhancing Efficiency of Perovskite Solar Cells via Surface Passivation with Graphene Oxide Interlayer. ACS Applied Materials & Interfaces, 2017, 9, 38967-38976.	4.0	118
111	17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. Journal of Materials Chemistry A, 2017, 5, 22952-22958.	5.2	119
112	Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Science Advances, 2017, 3, e1700106.	4.7	588
113	Stability Issues of Inorganic/Organic Hybrid Lead Perovskite Solar Cells. Series on Chemistry, Energy and the Environment, 2017, , 147-178.	0.3	1
114	A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells. CheM, 2017, 3, 290-302.	5.8	335
115	Cenerating Huge Magnetocurrent by Using Spin-Dependent Dehydrogenation Based on Electrochemical System. Journal of Physical Chemistry C, 2017, 121, 28420-28424.	1.5	12
116	The Role of Synthesis Parameters on Crystallization and Grain Size in Hybrid Halide Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 17053-17061.	1.5	30
117	Photocurrent hysteresis related to ion motion in metal-organic perovskites. Science China Chemistry, 2017, 60, 396-404.	4.2	19
118	Advances and Developments in Perovskite Materials for Solar Cell Applications. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 2159-2170.	2.2	5
119	Aminoâ€Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for Highâ€Performance Planarâ€Heterojunction Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1501534.	10.2	278
120	Phosphor coated NiO-based planar inverted organometallic halide perovskite solar cells with enhanced efficiency and stability. Applied Physics Letters, 2016, 109, .	1.5	27
121	F4TCNQ-doped DEPT-SC as hole transporting material for stable perovskite solar cells. Organic Electronics, 2016, 35, 171-175.	1.4	14
122	New generation perovskite solar cells with solution-processed amino-substituted perylene diimide derivative as electron-transport layer. Journal of Materials Chemistry A, 2016, 4, 8724-8733.	5.2	109
123	Recent progress on stability issues of organic–inorganic hybrid lead perovskite-based solar cells. RSC Advances, 2016, 6, 89356-89366.	1.7	69
124	Ultrafine Pt nanoparticle decoration with CoP as highly active electrocatalyst for alcohol oxidation. RSC Advances, 2016, 6, 100437-100442.	1.7	9
125	MoS 2 nanosheet decorated with trace loads of Pt as highly active electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2016, 219, 187-193.	2.6	69
126	Surface Plasmon Resonance Effect in Inverted Perovskite Solar Cells. Advanced Science, 2016, 3, 1500312.	5.6	88

#	Article	IF	CITATIONS
127	BiOl–TiO ₂ Nanocomposites for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2016, 3, 1500273.	1.9	34
128	Hierarchical TiO ₂ spheres assisted with graphene for a high performance lithium–sulfur battery. Journal of Materials Chemistry A, 2016, 4, 16454-16461.	5.2	45
129	Effect of Hole Transport Layer in Planar Inverted Perovskite Solar Cells. Chemistry Letters, 2016, 45, 89-91.	0.7	12
130	Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method. ACS Applied Materials & Interfaces, 2016, 8, 20067-20073.	4.0	88
131	Metal-free organic dyes for TiO2 and ZnO dye-sensitized solar cells. Scientific Reports, 2016, 6, 18756.	1.6	68
132	Insight into the CH ₃ NH ₃ PbI ₃ /C interface in hole-conductor-free mesoscopic perovskite solar cells. Nanoscale, 2016, 8, 14163-14170.	2.8	19
133	Significant enhancement of the photoelectrochemical activity of WO3 nanoflakes by carbon quantum dots decoration. Carbon, 2016, 105, 387-393.	5.4	72
134	Advances in nanostructured thin film materials for solar cell applications. Renewable and Sustainable Energy Reviews, 2016, 59, 726-737.	8.2	133
135	MAPbI _{3â^'x} Br _x mixed halide perovskites for fully printable mesoscopic solar cells with enhanced efficiency and less hysteresis. Nanoscale, 2016, 8, 8839-8846.	2.8	57
136	Novel porphyrin-preparation, characterization, and applications in solar energy conversion. Physical Chemistry Chemical Physics, 2016, 18, 6885-6892.	1.3	44
137	Dopant-free 3,3′-bithiophene derivatives as hole transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 3661-3666.	5.2	50
138	Graphene oxide modified hole transport layer for CH3NH3PbI3 planar heterojunction solar cells. Solar Energy, 2016, 131, 176-182.	2.9	59
139	Graphene oxide-protected three dimensional Se as a binder-free cathode for Li-Se battery. Electrochimica Acta, 2016, 190, 258-263.	2.6	29
140	14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes. Nanoscale, 2016, 8, 6379-6385.	2.8	151
141	Molecular Engineering of Organic Dyes with a Holeâ€Extending Donor Tail for Efficient Allâ€Solidâ€State Dyeâ€Sensitized Solar Cells. ChemSusChem, 2015, 8, 2529-2536.	3.6	18
142	Surface plasma resonance enhanced photocurrent generation in NiO photoanode based solar cells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 199, 1-8.	1.7	7
143	Optimizing the Volmer Step by Single-Layer Nickel Hydroxide Nanosheets in Hydrogen Evolution Reaction of Platinum. ACS Catalysis, 2015, 5, 3801-3806.	5.5	142
144	Investigation on regeneration kinetics at perovskite/oxide interface with scanning electrochemical microscopy. Journal of Materials Chemistry A, 2015, 3, 9216-9222.	5.2	19

#	Article	IF	CITATIONS
145	A Power Pack Based on Organometallic Perovskite Solar Cell and Supercapacitor. ACS Nano, 2015, 9, 1782-1787.	7.3	201
146	Efficient mesoscopic perovskite solar cells based on the CH ₃ NH ₃ PbI ₂ Br light absorber. Journal of Materials Chemistry A, 2015, 3, 9116-9122.	5.2	67
147	Alkyl-thiophene Functionalized D-Ï€-A Porphyrins for Mesoscopic Solar Cells. Electrochimica Acta, 2015, 179, 187-196.	2.6	13
148	Hybrid of Fe@Fe3O4 core-shell nanoparticle and iron-nitrogen-doped carbon material as an efficient electrocatalyst for oxygen reduction reaction. Electrochimica Acta, 2015, 174, 933-939.	2.6	34
149	Efficient dye-sensitized solar cells using mesoporous submicrometer TiO ₂ beads. RSC Advances, 2015, 5, 62630-62637.	1.7	8
150	Recent progress in efficient hybrid lead halide perovskite solar cells. Science and Technology of Advanced Materials, 2015, 16, 036004.	2.8	87
151	Visualized acid–base discoloration and optoelectronic investigations of azines and azomethines having double 4-[N,N-di(4-methoxyphenyl)amino]phenyl terminals. Journal of Materials Chemistry C, 2015, 3, 7748-7755.	2.7	14
152	Photovoltaic behaviour of lead methylammonium triiodide perovskite solar cells down to 80 K. Journal of Materials Chemistry A, 2015, 3, 11762-11767.	5.2	135
153	Spiro-thiophene derivatives as hole-transport materials for perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 12139-12144.	5.2	96
154	Hole Selective NiO Contact for Efficient Perovskite Solar Cells with Carbon Electrode. Nano Letters, 2015, 15, 2402-2408.	4.5	412
155	Porous Li ₄ Ti ₅ O ₁₂ –TiO ₂ nanosheet arrays for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 10107-10113.	5.2	72
156	N/Si co-doped oriented single crystalline rutile TiO ₂ nanorods for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, 3, 10020-10025.	5.2	55
157	Co9S8 hollow spheres for enhanced electrochemical detection of hydrogen peroxide. Talanta, 2015, 141, 73-79.	2.9	26
158	Working Mechanism for Flexible Perovskite Solar Cells with Simplified Architecture. Nano Letters, 2015, 15, 6514-6520.	4.5	91
159	NiO nanosheets as efficient top hole transporters for carbon counter electrode based perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 24121-24127.	5.2	91
160	Rutile-TiO ₂ decorated Li ₄ Ti ₅ O ₁₂ nanosheet arrays with 3D interconnected architecture as anodes for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2015, 3, 23570-23576.	5.2	60
161	ZnO decorated TiO2 nanosheet composites for lithium ion battery. Electrochimica Acta, 2015, 182, 529-536.	2.6	42
162	Effect of temperature on the efficiency of organometallic perovskite solar cells. Journal of Energy Chemistry, 2015, 24, 729-735.	7.1	54

#	Article	IF	CITATIONS
163	Carbon coated Cu2O nanowires for photo-electrochemical water splitting with enhanced activity. Applied Surface Science, 2015, 358, 404-411.	3.1	66
164	Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy, 2015, 17, 171-179.	8.2	261
165	A perovskite solar cell-TiO ₂ @BiVO ₄ photoelectrochemical system for direct solar water splitting. Journal of Materials Chemistry A, 2015, 3, 21630-21636.	5.2	109
166	p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Transactions, 2015, 44, 3967-3973.	1.6	138
167	Hydrogen peroxide biosensor based on microperoxidase-11 immobilized on flexible MWCNTs-BC nanocomposite film. Talanta, 2015, 131, 243-248.	2.9	21
168	Enhanced performance of p-type dye sensitized solar cells based on mesoporous Ni _{1â^'x} Mg _x O ternary oxide films. RSC Advances, 2014, 4, 60670-60674.	1.7	18
169	INVESTIGATION OF DYE-REGENERATION KINETICS AT DYE-SENSITIZED p-TYPE CuCrO2 FILM/ELECTROLYTES INTERFACE WITH SCANNING ELECTROCHEMICAL MICROSCOPY. Nano, 2014, 09, 1440008.	0.5	9
170	CH ₃ NH ₃ PbI ₃ -Based Planar Solar Cells with Magnetron-Sputtered Nickel Oxide. ACS Applied Materials & Interfaces, 2014, 6, 22862-22870.	4.0	214
171	Electrodes: Flexible Supercapacitors Based on Bacterial Cellulose Paper Electrodes (Adv. Energy) Tj ETQq1 1 0.78 Observation of a Charged Charmoniumlike Structure in < mml:math	4314 rgBT 10.2	/Qverlock 1
172	xmins:mmi="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msup> <mml:mi> e</mml:mi> <mml:mo> + </mml:mo> </mml:msup> <mml:msup> <mml:mi> stretchy="false">â†' <mml:mo< td=""><td>e<td>i><mml:mo></mml:mo></td></td></mml:mo<></mml:mi></mml:msup>	e <td>i><mml:mo></mml:mo></td>	i> <mml:mo></mml:mo>

MING-KUI WANG

#	Article	IF	CITATIONS
181	Highly efficient light harvesting ruthenium sensitizers for dye-sensitized solar cells featuring triphenylamine donor antennas. Journal of Materials Chemistry A, 2014, 2, 4945-4953.	5.2	54
182	Flexible Supercapacitors Based on Bacterial Cellulose Paper Electrodes. Advanced Energy Materials, 2014, 4, 1301655.	10.2	182
183	Freestanding bacterial cellulose–polypyrrole nanofibres paper electrodes for advanced energy storage devices. Nano Energy, 2014, 9, 309-317.	8.2	167
184	Esterification of Indoline-Based Small-Molecule Donors for Efficient Co-evaporated Organic Photovoltaics. Journal of Physical Chemistry C, 2014, 118, 14785-14794.	1.5	15
185	Investigation of Dye Regeneration Kinetics in Sensitized Solar Cells by Scanning Electrochemical Microscopy. ChemPhysChem, 2014, 15, 1182-1189.	1.0	20
186	A cyclopenta[1,2-b:5,4-b′]dithiophene–porphyrin conjugate for mesoscopic solar cells: a D–π–D–A approach. Physical Chemistry Chemical Physics, 2014, 16, 24755-24762.	1.3	15
187	Mn ₃ O ₄ /Carbon Nanotube Nanocomposites as Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Solution. ChemElectroChem, 2014, 1, 1531-1536.	1.7	16
188	Lead Methylammonium Triiodide Perovskiteâ€Based Solar Cells: An Interfacial Chargeâ€Transfer Investigation. ChemSusChem, 2014, 7, 3088-3094.	3.6	51
189	Pyrene-conjugated porphyrins for efficient mesoscopic solar cells: the role of the spacer. Journal of Materials Chemistry A, 2014, 2, 17495-17501.	5.2	35
190	Investigation of the regeneration kinetics of organic dyes with pyridine ring anchoring groups by scanning electrochemical microscopy. RSC Advances, 2014, 4, 51374-51380.	1.7	11
191	Organic Sensitizers with Pyridine Ring Anchoring Group for p-Type Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 16433-16440.	1.5	66
192	Active catalysts based on cobalt oxide@cobalt/N-C nanocomposites for oxygen reduction reaction in alkaline solutions. Nano Research, 2014, 7, 1054-1064.	5.8	72
193	Boosting the Photocurrent Density of p-Type Solar Cells Based on Organometal Halide Perovskite-Sensitized Mesoporous NiO Photocathodes. ACS Applied Materials & Interfaces, 2014, 6, 12609-12617.	4.0	50
194	Modulated Charge Injection in p-Type Dye-Sensitized Solar Cells Using Fluorene-Based Light Absorbers. ACS Applied Materials & Interfaces, 2014, 6, 3448-3454.	4.0	48
195	TiO 2 nanotubes modified with electrochemically reduced graphene oxide for photoelectrochemical water splitting. Carbon, 2014, 80, 591-598.	5.4	47
196	Fabrication of Cobalt Porphyrin. Electrochemically Reduced Graphene Oxide Hybrid Films for Electrocatalytic Hydrogen Evolution in Aqueous Solution. Langmuir, 2014, 30, 6990-6998.	1.6	73
197	Dâ~'Ĩ€â€"A Porphyrin Sensitizers with Ï€-Extended Conjugation for Mesoscopic Solar Cells. Journal of Physical Chemistry C, 2014, 118, 14739-14748.	1.5	26
198	Near Field Enhanced Photocurrent Generation in P-type Dye-Sensitized Solar Cells. Scientific Reports, 2014, 4, 3961.	1.6	24

#	Article	IF	CITATIONS
199	Simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid with helical carbon nanotubes. Electrochimica Acta, 2013, 91, 261-266.	2.6	97
200	D–π–A structured porphyrins for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 10008.	5.2	64
201	Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes. Nanoscale, 2013, 5, 7963.	2.8	50
202	Recent developments in sensitizers for mesoporous sensitized solar cells. Frontiers of Optoelectronics, 2013, 6, 373-385.	1.9	6
203	Low-cost porous Cu2ZnSnSe4 film remarkably superior to noble Pt as counter electrode in quantum dot-sensitized solar cell system. Journal of Power Sources, 2013, 226, 359-362.	4.0	57
204	Electrochemically reduced graphene oxide multilayer films as metal-free electrocatalysts for oxygen reduction. Journal of Materials Chemistry A, 2013, 1, 1415-1420.	5.2	43
205	Electrochemically Deposited CoS Films as Counter Electrodes for Efficient Quantum Dot-Sensitized Solar Cells. Journal of the Electrochemical Society, 2013, 160, H624-H629.	1.3	22
206	Preparation of hybrid films containing gold nanoparticles and cobalt porphyrin with flexible electrochemical properties. Thin Solid Films, 2013, 545, 327-331.	0.8	14
207	Zinc Porphyrins with a Pyridineâ€Ringâ€Anchoring Group for Dye‣ensitized Solar Cells. Chemistry - an Asian Journal, 2013, 8, 956-962.	1.7	67
208	Effect of the molecular weight of poly(3-hexylthiophene) on the performance of solid-state dye-sensitized solar cells. RSC Advances, 2013, 3, 14037.	1.7	8
209	Potassiumâ€Doped Zinc Oxide as Photocathode Material in Dyeâ€ S ensitized Solar Cells. ChemSusChem, 2013, 6, 622-629.	3.6	34
210	Enhanced Performance of pâ€Type Dyeâ€Sensitized Solar Cells Based on Ultrasmall Mgâ€Đoped CuCrO ₂ Nanocrystals. ChemSusChem, 2013, 6, 1432-1437.	3.6	68
211	Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells. Scientific Reports, 2013, 3, 1489.	1.6	130
212	Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system. Nanoscale, 2013, 5, 6992.	2.8	54
213	Disulfide/Thiolate Based Redox Shuttle for Dye-Sensitized Solar Cells: An Impedance Spectroscopy Study. Journal of Physical Chemistry C, 2012, 116, 25233-25241.	1.5	25
214	Solid-State Dye-Sensitized Solar Cells using Ordered TiO ₂ Nanorods on Transparent Conductive Oxide as Photoanodes. Journal of Physical Chemistry C, 2012, 116, 3266-3273.	1.5	75
215	Optimization of extremely broadband terahertz absorber based on multilayered doped silicon film. , 2012, , .		2
216	Recent developments in redox electrolytes for dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 9394.	15.6	265

#	Article	IF	CITATIONS
217	Hydrothermal synthesis of ultrasmall CuCrO2 nanocrystal alternatives to NiO nanoparticles in efficient p-type dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 24760.	6.7	162
218	Alternate redox electrolytes in dye-sensitized solar cells. Science Bulletin, 2012, 57, 4131-4142.	1.7	26
219	Innentitelbild: Molecular Engineering of Zinc Phthalocyanines with Phosphinic Acid Anchoring Groups (Angew. Chem. 8/2012). Angewandte Chemie, 2012, 124, 1766-1766.	1.6	0
220	Molecular‣cale Interface Engineering of Nanocrystalline Titania by Coâ€adsorbents for Solar Energy Conversion. ChemSusChem, 2012, 5, 181-187.	3.6	26
221	Molecular Engineering of Zinc Phthalocyanines with Phosphinic Acid Anchoring Groups. Angewandte Chemie - International Edition, 2012, 51, 1895-1898.	7.2	86
222	Inside Cover: Molecular Engineering of Zinc Phthalocyanines with Phosphinic Acid Anchoring Groups (Angew. Chem. Int. Ed. 8/2012). Angewandte Chemie - International Edition, 2012, 51, 1732-1732.	7.2	0
223	A Thiopheneâ€Based Anchoring Ligand and Its Heteroleptic Ru(II)â€Complex for Efficient Thinâ€Film Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2011, 21, 963-970.	7.8	53
224	D-Ï€-A Sensitizers for Dye-Sensitized Solar Cells: Linear vs Branched Oligothiophenes. Chemistry of Materials, 2010, 22, 1836-1845.	3.2	144
225	Enhanced‣ightâ€Harvesting Amphiphilic Ruthenium Dye for Efficient Solidâ€State Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2010, 20, 1821-1826.	7.8	68
226	High efficiency solid-state sensitized heterojunction photovoltaic device. Nano Today, 2010, 5, 169-174.	6.2	76
227	Efficient and Stable Solidâ€State Dyeâ€Sensitized Solar Cells Based on a Highâ€Molarâ€Extinctionâ€Coefficient Sensitizer. Small, 2010, 6, 319-324.	5.2	74
228	An organic redox electrolyte to rival triiodide/iodide in dye-sensitized solar cells. Nature Chemistry, 2010, 2, 385-389.	6.6	510
229	Improving the Electrochemical Activity of LiMnPO[sub 4] Via Mn-Site Substitution. Journal of the Electrochemical Society, 2010, 157, A225.	1.3	112
230	On the inexactness level of robust Levenberg–Marquardt methods. Optimization, 2010, 59, 273-287.	1.0	27
231	Molecular design of metal-free D–Ĩ€-A substituted sensitizers for dye-sensitized solar cells. Energy and Environmental Science, 2010, 3, 1757.	15.6	70
232	Application of Cu(ii) and Zn(ii) coproporphyrins as sensitizers for thin film dye sensitized solar cells. Energy and Environmental Science, 2010, 3, 956.	15.6	37
233	A new family of substituted triethoxysilyl iodides as organic iodide sources for dye-sensitised solar cells. Journal of Materials Chemistry, 2010, 20, 3694.	6.7	11
234	Surface Design in Solid‣tate Dye Sensitized Solar Cells: Effects of Zwitterionic Coâ€adsorbents on Photovoltaic Performance. Advanced Functional Materials, 2009, 19, 2163-2172.	7.8	130

MING-KUI WANG

#	Article	IF	CITATIONS
235	Tetraalkylammonium Salts of Weakly Coordinating Aluminates: Ionic Liquids, Materials for Electrochemical Applications and Useful Compounds for Anion Investigation. Chemistry - A European Journal, 2009, 15, 1966-1976.	1.7	92
236	The Influence of Charge Transport and Recombination on the Performance of Dye ensitized Solar Cells. ChemPhysChem, 2009, 10, 290-299.	1.0	253
237	New Ruthenium Sensitizer with Carbazole Antennas for Efficient and Stable Thin-Film Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2009, 113, 20752-20757.	1.5	60
238	CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009, 131, 15976-15977.	6.6	862
239	Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells. ACS Nano, 2009, 3, 3103-3109.	7.3	1,210
240	Electron Transport and Recombination in Solid-State Dye Solar Cell with Spiro-OMeTAD as Hole Conductor. Journal of the American Chemical Society, 2009, 131, 558-562.	6.6	424
241	Passivation of nanocrystalline TiO2 junctions by surface adsorbed phosphinate amphiphiles enhances the photovoltaic performance of dye sensitized solar cells. Dalton Transactions, 2009, , 10015.	1.6	97
242	Efficient CdSe Quantum Dot-Sensitized Solar Cells Prepared by an Improved Successive Ionic Layer Adsorption and Reaction Process. Nano Letters, 2009, 9, 4221-4227.	4.5	612
243	Probing Single Flavoprotein Molecules on Graphite in Aqueous Solution with Scanning Tunneling Microscopy. Small, 2008, 4, 1110-1114.	5.2	11
244	Highâ€Performance Liquid and Solid Dyeâ€6ensitized Solar Cells Based on a Novel Metalâ€Free Organic Sensitizer. Advanced Materials, 2008, 20, 4460-4463.	11.1	154
245	A new triterpenoid saponin from Anemone raddeana. Chinese Chemical Letters, 2008, 19, 305-307.	4.8	7
246	High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nature Materials, 2008, 7, 626-630.	13.3	622
247	Topological and Electron-Transfer Properties of Glucose Oxidase Adsorbed on Highly Oriented Pyrolytic Graphite Electrodes. Journal of Physical Chemistry C, 2008, 112, 5165-5173.	1.5	20
248	A new heteroleptic ruthenium sensitizer enhances the absorptivity of mesoporous titania film for a high efficiency dye-sensitized solar cell. Chemical Communications, 2008, , 2635.	2.2	310
249	Enhance the Optical Absorptivity of Nanocrystalline TiO ₂ Film with High Molar Extinction Coefficient Ruthenium Sensitizers for High Performance Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2008, 130, 10720-10728.	6.6	1,307
250	Tetrahydrothiophenium-Based Ionic Liquids for High Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2008, 112, 11063-11067.	1.5	46
251	Assembly of 12-tungstosilicic acid and 4-aminobenzo-15-crown-5 ether based on the electrostatic attraction through bridging of oxonium ions on different substrates. Journal of Electroanalytical Chemistry, 2007, 600, 318-324.	1.9	14
252	Enhanced electrochemical properties of nanocomposite polymer electrolyte based on copolymer with exfoliated clays. Journal of Power Sources, 2007, 170, 425-432.	4.0	51

MING-KUI WANG

#	Article	IF	CITATIONS
253	Copper hexacyanoferrate multilayer films on glassy carbon electrode modified with 4-aminobenzoic acid in aqueous solution. Talanta, 2006, 68, 741-747.	2.9	55
254	A novel comb-like copolymer based polymer electrolyte for Li batteries. Journal of Power Sources, 2005, 139, 223-229.	4.0	24
255	Direct electrochemistry of microperoxidase 11 using carbon nanotube modified electrodes. Journal of Electroanalytical Chemistry, 2005, 578, 121-127.	1.9	74
256	Direct electron transfer and electrocatalysis of microperoxidase immobilized on nanohybrid film. Journal of Electroanalytical Chemistry, 2005, 581, 1-10.	1.9	73
257	Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes. Biosensors and Bioelectronics, 2005, 21, 159-166.	5.3	70
258	A Low-Cost Biofuel Cell with pH-Dependent Power Output Based on Porous Carbon as Matrix. Chemistry - A European Journal, 2005, 11, 4970-4974.	1.7	73
259	The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosensors and Bioelectronics, 2005, 21, 984-988.	5.3	532
260	Parallel Alignment of Carbon Nanotubes Induced with Inorganic Molecules. Langmuir, 2005, 21, 12068-12071.	1.6	5
261	Conductive Property of Multiwall Carbon Nanotubes-PEO-Salt Nanocomposite Film. Electrochemical and Solid-State Letters, 2004, 7, E48.	2.2	4
262	Electrochemical and Bioelectrochemistry Properties of Room-Temperature Ionic Liquids and Carbon Composite Materials. Analytical Chemistry, 2004, 76, 4960-4967.	3.2	289
263	Properties of a nanocomposite polymer electrolyte from an amorphous comb-branch polymer and nanoparticles. Journal of Solid State Electrochemistry, 2004, 8, 283-289.	1.2	13
264	Poly(vinylidene fluoride-hexafluoropropylene)/organo-montmorillonite clays nanocomposite lithium polymer electrolytes. Electrochimica Acta, 2004, 49, 3595-3602.	2.6	64
265	Polyaniline-coated carbon particles and their electrode behavior in organic carbonate electrolyte. Journal of Electroanalytical Chemistry, 2004, 570, 201-208.	1.9	17
266	A Single Ionic Conductor Based on Nafion and Its Electrochemical Properties Used As Lithium Polymer Electrolyte. Journal of Physical Chemistry B, 2004, 108, 1365-1370.	1.2	58
267	Electrochemical and electrogenerated chemiluminescence of clay nanoparticles/Ru(bpy)32+ multilayer films on ITO electrodes. Analyst, The, 2004, 129, 657.	1.7	44
268	Electrochemistry and Electrogenerated Chemiluminescence of SiO2Nanoparticles/Tris(2,2â€~-bipyridyl)ruthenium(ΙΙ) Multilayer Films on Indium Tin Oxide Electrodes. Analytical Chemistry, 2004, 76, 184-191.	3.2	155
269	Electrochemical behavior of α-Keggin-type nanoparticles, Co(en)3(PMo12O40), in polyethylene glycol. Journal of Solid State Electrochemistry, 2003, 7, 337-343.	1.2	2
270	Catalytic Behavior of Calcium Oxide for Synthesis of Dimethyl Carbonate from Propylene Carbonate and Methanol Near Room Temperature. ACS Symposium Series, 2003, , 138-158.	0.5	2