
Yuanmei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4557427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cell membrane-anchored anti-HIV single-chain antibodies and bifunctional inhibitors targeting the gp41 fusion protein: new strategies for HIV gene therapy. Emerging Microbes and Infections, 2022, 11, 30-49.	3.0	5
2	Efficient treatment and pre-exposure prophylaxis in rhesus macaques by an HIV fusion-inhibitory lipopeptide. Cell, 2022, 185, 131-144.e18.	13.5	24
3	Design of a Bispecific HIV Entry Inhibitor Targeting the Cell Receptor CD4 and Viral Fusion Protein Gp41. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	4
4	SARS-CoV-2 fusion-inhibitory lipopeptides maintain high potency against divergent variants of concern including Omicron. Emerging Microbes and Infections, 2022, 11, 1819-1827.	3.0	10
5	Structure-based design and characterization of novel fusion-inhibitory lipopeptides against SARS-CoV-2 and emerging variants. Emerging Microbes and Infections, 2021, 10, 1227-1240.	3.0	17
6	Generation of HIV-resistant cells with a single-domain antibody: implications for HIV-1 gene therapy. Cellular and Molecular Immunology, 2021, 18, 660-674.	4.8	9
7	SARS-CoV-2-derived fusion inhibitor lipopeptides exhibit highly potent and broad-spectrum activity against divergent human coronaviruses. Signal Transduction and Targeted Therapy, 2021, 6, 294.	7.1	20
8	Pan-coronavirus fusion inhibitors possess potent inhibitory activity against HIV-1, HIV-2, and simian immunodeficiency virus. Emerging Microbes and Infections, 2021, 10, 810-821.	3.0	15
9	Cross-reactive neutralization of SARS-CoV-2 by serum antibodies from recovered SARS patients and immunized animals. Science Advances, 2020, 6, .	4.7	57
10	Design of Potent Membrane Fusion Inhibitors against SARS-CoV-2, an Emerging Coronavirus with High Fusogenic Activity. Journal of Virology, 2020, 94, .	1.5	164
11	Therapeutic Efficacy and Resistance Selection of a Lipopeptide Fusion Inhibitor in Simian Immunodeficiency Virus-Infected Rhesus Macaques. Journal of Virology, 2020, 94, .	1.5	3
12	Structural and Functional Characterization of the Secondary Mutation N126K Selected by Various HIV-1 Fusion Inhibitors. Viruses, 2020, 12, 326.	1.5	2
13	Conserved Residue Asn-145 in the C-Terminal Heptad Repeat Region of HIV-1 gp41 is Critical for Viral Fusion and Regulates the Antiviral Activity of Fusion Inhibitors. Viruses, 2019, 11, 609.	1.5	4
14	A Membrane-Anchored Short-Peptide Fusion Inhibitor Fully Protects Target Cells from Infections of Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. Journal of Virology, 2019, 93, .	1.5	15
15	Design and Characterization of Cholesterylated Peptide HIV-1/2 Fusion Inhibitors with Extremely Potent and Long-Lasting Antiviral Activity. Journal of Virology, 2019, 93, .	1.5	34
16	Monotherapy with a low-dose lipopeptide HIV fusion inhibitor maintains long-term viral suppression in rhesus macaques. PLoS Pathogens, 2019, 15, e1007552.	2.1	30
17	The Tryptophan-Rich Motif of HIV-1 gp41 Can Interact with the N-Terminal Deep Pocket Site: New Insights into the Structure and Function of gp41 and Its Inhibitors. Journal of Virology, 2019, 94, .	1.5	7
18	Structural and functional characterization of HIV-1 cell fusion inhibitor T20. Aids, 2019, 33, 1-11.	1.0	38

Υυανμει Ζηυ

#	Article	IF	CITATIONS
19	Exceptional potency and structural basis of a T1249-derived lipopeptide fusion inhibitor against HIV-1, HIV-2, and simian immunodeficiency virus. Journal of Biological Chemistry, 2018, 293, 5323-5334.	1.6	27
20	Mechanism of HIV-1 Resistance to an Electronically Constrained α-Helical Peptide Membrane Fusion Inhibitor. Journal of Virology, 2018, 92, .	1.5	12
21	Molecular mechanism of HIV-1 resistance to sifuvirtide, a clinical trial–approved membrane fusion inhibitor. Journal of Biological Chemistry, 2018, 293, 12703-12718.	1.6	20
22	Structural Insights into the Mechanisms of Action of Short-Peptide HIV-1 Fusion Inhibitors Targeting the Gp41 Pocket. Frontiers in Cellular and Infection Microbiology, 2018, 8, 51.	1.8	14
23	Structural and Functional Characterization of Membrane Fusion Inhibitors with Extremely Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. Journal of Virology, 2018, 92, .	1.5	30
24	Design of Novel HIV-1/2 Fusion Inhibitors with High Therapeutic Efficacy in Rhesus Monkey Models. Journal of Virology, 2018, 92, .	1.5	29
25	A Lipopeptide HIV-1/2 Fusion Inhibitor with Highly Potent <i>In Vitro</i> , <i>Ex Vivo</i> , and <i>In Vivo</i> Antiviral Activity. Journal of Virology, 2017, 91, .	1.5	53
26	Enfuvirtide (T20)-Based Lipopeptide Is a Potent HIV-1 Cell Fusion Inhibitor: Implications for Viral Entry and Inhibition. Journal of Virology, 2017, 91, .	1.5	65
27	A Helical Short-Peptide Fusion Inhibitor with Highly Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. Journal of Virology, 2017, 91, .	1.5	35
28	Identification of a novel HIV-1-neutralizing antibody from a CRF07_BC-infected Chinese donor. Oncotarget, 2017, 8, 63047-63063.	0.8	6