
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4557365/publications.pdf Version: 2024-02-01

Ι ΙΤΛΟ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Plant Metabolomics: An Indispensable System Biology Tool for Plant Science. International Journal of Molecular Sciences, 2016, 17, 767.	1.8	238
2	Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Reports, 2005, 23, 759-763.	2.8	151
3	GMDD: a database of GMO detection methods. BMC Bioinformatics, 2008, 9, 260.	1.2	101
4	Characterization of GM events by insert knowledge adapted re-sequencing approaches. Scientific Reports, 2013, 3, 2839.	1.6	89
5	Visual and Rapid Detection of Two Genetically Modified Soybean Events Using Loop-mediated Isothermal Amplification Method. Food Analytical Methods, 2010, 3, 313-320.	1.3	84
6	Event-Specific Quantitative Detection of Nine Genetically Modified Maizes Using One Novel Standard Reference Molecule. Journal of Agricultural and Food Chemistry, 2007, 55, 15-24.	2.4	83
7	Qualitative and Quantitative PCR Methods for Event-specific Detection of Genetically Modified Cotton Mon1445 and Mon531. Transgenic Research, 2005, 14, 817-831.	1.3	81
8	Event Specific Qualitative and Quantitative Polymerase Chain Reaction Detection of Genetically Modified MON863 Maize Based on the 5â€~-Transgene Integration Sequence. Journal of Agricultural and Food Chemistry, 2005, 53, 9312-9318.	2.4	80
9	Validation of a Tomato-Specific Gene,LAT52, Used as an Endogenous Reference Gene in Qualitative and Real-Time Quantitative PCR Detection of Transgenic Tomatoes. Journal of Agricultural and Food Chemistry, 2005, 53, 183-190.	2.4	72
10	MPIC: A High-Throughput Analytical Method for Multiple DNA Targets. Analytical Chemistry, 2011, 83, 1579-1586.	3.2	72
11	Argonaute integrated single-tube PCR system enables supersensitive detection of rare mutations. Nucleic Acids Research, 2021, 49, e75-e75.	6.5	66
12	One Simple DNA Extraction Device and Its Combination with Modified Visual Loop-Mediated Isothermal Amplification for Rapid On-Field Detection of Genetically Modified Organisms. Analytical Chemistry, 2013, 85, 75-82.	3.2	63
13	High Sensitive Detection of Cry1Ab Protein Using a Quantum Dot-Based Fluorescence-Linked Immunosorbent Assay. Journal of Agricultural and Food Chemistry, 2011, 59, 2184-2189.	2.4	58
14	Development of the Visual Loop-Mediated Isothermal Amplification Assays for Seven Genetically Modified Maize Events and Their Application in Practical Samples Analysis. Journal of Agricultural and Food Chemistry, 2011, 59, 5914-5918.	2.4	57
15	GMO quantification: valuable experience and insights for the future. Analytical and Bioanalytical Chemistry, 2014, 406, 6485-6497.	1.9	54
16	Identification and Quantification of Three Genetically Modified Insect Resistant Cotton Lines Using Conventional and TaqMan Real-Time Polymerase Chain Reaction Methods. Journal of Agricultural and Food Chemistry, 2005, 53, 6222-6229.	2.4	51
17	Novel Reference Gene, High-mobility-group protein I/Y, Used in Qualitative and Real-Time Quantitative Polymerase Chain Reaction Detection of Transgenic Rapeseed Cultivars. Journal of AOAC INTERNATIONAL, 2005, 88, 577-584.	0.7	49
18	Development of One Novel Multiple-Target Plasmid for Duplex Quantitative PCR Analysis of Roundup Ready Soybean. Journal of Agricultural and Food Chemistry, 2008, 56, 5514-5520.	2.4	48

#	Article	IF	CITATIONS
19	International Collaborative Study of the Endogenous Reference Gene, <i>Sucrose Phosphate Synthase</i> (<i>SPS</i>), Used for Qualitative and Quantitative Analysis of Genetically Modified Rice. Journal of Agricultural and Food Chemistry, 2009, 57, 3525-3532.	2.4	47
20	Event-specific qualitative and quantitative PCR detection of MON863 maize based upon the 3â€2-transgene integration sequence. Journal of Cereal Science, 2006, 43, 250-257.	1.8	40
21	GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays. Analytical and Bioanalytical Chemistry, 2015, 407, 4829-4834.	1.9	40
22	PAM-free loop-mediated isothermal amplification coupled with CRISPR/Cas12a cleavage (Cas-PfLAMP) for rapid detection of rice pathogens. Biosensors and Bioelectronics, 2022, 204, 114076.	5.3	37
23	Event-Specific Qualitative and Quantitative Polymerase Chain Reaction Analysis for Genetically Modified Canola T45. Journal of Agricultural and Food Chemistry, 2006, 54, 9735-9740.	2.4	33
24	Development and inter-laboratory transfer of a decaplex polymerase chain reaction assay combined with capillary electrophoresis for the simultaneous detection of ten food allergens. Food Chemistry, 2016, 199, 799-808.	4.2	33
25	Characterization of the Exogenous Insert and Development of Event-specific PCR Detection Methods for Genetically Modified Huanong No. 1 Papaya. Journal of Agricultural and Food Chemistry, 2009, 57, 7205-7212.	2.4	31
26	Applicability of the Chymopapain Gene Used as Endogenous Reference Gene for Transgenic Huanong No. 1 Papaya Detection. Journal of Agricultural and Food Chemistry, 2009, 57, 6502-6509.	2.4	30
27	Screening and construct-specific detection methods of transgenic Huafan No 1 tomato by conventional and real-time PCR. Journal of the Science of Food and Agriculture, 2005, 85, 2159-2166.	1.7	29
28	Development and In-House Validation of the Event-Specific Polymerase Chain Reaction Detection Methods for Genetically Modified Soybean MON89788 Based on the Cloned Integration Flanking Sequence. Journal of Agricultural and Food Chemistry, 2009, 57, 10524-10530.	2.4	29
29	Evaluation of Four Genes in Rice for Their Suitability As Endogenous Reference Standards in Quantitative PCR. Journal of Agricultural and Food Chemistry, 2010, 58, 11543-11547.	2.4	28
30	A multiplex degenerate PCR analytical approach targeting to eight genes for screening GMOs. Food Chemistry, 2012, 132, 1566-1573.	4.2	28
31	Droplet digital PCR (ddPCR) method for the detection and quantification of goat and sheep derivatives in commercial meat products. European Food Research and Technology, 2018, 244, 767-774.	1.6	27
32	International Collaborative Study of the Endogenous Reference Gene <i>LAT</i> 52 Used for Qualitative and Quantitative Analyses of Genetically Modified Tomato. Journal of Agricultural and Food Chemistry, 2008, 56, 3438-3443.	2.4	25
33	Qualitative and Quantitative Event-Specific PCR Detection Methods for Oxy-235 Canola Based on the 3′ Integration Flanking Sequence. Journal of Agricultural and Food Chemistry, 2008, 56, 1804-1809.	2.4	24
34	Applicability of Plasmid Calibrant pTC1507 in Quantification of TC1507 Maize: An Interlaboratory Study. Journal of Agricultural and Food Chemistry, 2012, 60, 23-28.	2.4	24
35	Visual detection of multiple genetically modified organisms in a capillary array. Lab on A Chip, 2017, 17, 521-529.	3.1	21
36	Evaluation of the reliability of maize reference assays for GMO quantification. Analytical and Bioanalytical Chemistry, 2010, 396, 2189-2201.	1.9	20

#	Article	IF	CITATIONS
37	The Rice Actin-Binding Protein RMD Regulates Light-Dependent Shoot Gravitropism. Plant Physiology, 2019, 181, 630-644.	2.3	20
38	NGS-based amplicon sequencing approach; towards a new era in GMO screening and detection. Food Control, 2018, 93, 201-210.	2.8	19
39	A novel universal real-time PCR system using the attached universal duplex probes for quantitative analysis of nucleic acids. BMC Molecular Biology, 2008, 9, 54.	3.0	18
40	Development and application of a multi-targeting reference plasmid as calibrator for analysis of five genetically modified soybean events. Analytical and Bioanalytical Chemistry, 2015, 407, 2877-2886.	1.9	17
41	Interlaboratory Trial Validation of an Event-Specific Qualitative Polymerase Chain Reaction-Based Detection Method for Genetically Modified RT73 Rapeseed. Journal of AOAC INTERNATIONAL, 2007, 90, 1639-1646.	0.7	16
42	Simplex and Duplex Polymerase Chain Reaction Analysis of Herculex® RW (59122) Maize Based on One Reference Molecule Including Separated Fragments of 5 Integration Site and Endogenous Gene. Journal of AOAC INTERNATIONAL, 2009, 92, 1472-1483.	0.7	16
43	Development and in-house validation of the event-specific qualitative and quantitative PCR detection methods for genetically modified cotton MON15985. Journal of the Science of Food and Agriculture, 2009, 90, n/a-n/a.	1.7	16
44	Establishment and Application of Event-Specific Polymerase Chain Reaction Methods for Two Genetically Modified Soybean Events, A2704-12 and A5547-127. Journal of Agricultural and Food Chemistry, 2011, 59, 13188-13194.	2.4	16
45	Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2. Plant Cell Reports, 2016, 35, 429-437.	2.8	16
46	Quantitative mapping of DNA phosphorothioatome reveals phosphorothioate heterogeneity of low modification frequency. PLoS Genetics, 2019, 15, e1008026.	1.5	16
47	Mini-Disk Capillary Array Coupling with LAMP for Visual Detection of Multiple Nucleic Acids using Genetically Modified Organism Analysis as an Example. Journal of Agricultural and Food Chemistry, 2020, 68, 899-906.	2.4	16
48	Collaborative Validation of an Event-Specific Quantitative Real-Time PCR Method for Genetically Modified Rice Event TT51-1 Detection. Journal of Agricultural and Food Chemistry, 2013, 61, 5953-5960.	2.4	15
49	International collaborative ring trial of four gene-specific loop-mediated isothermal amplification assays in GMO analysis. Food Control, 2018, 84, 278-283.	2.8	13
50	Rapid and sensitive screening and identification of CRISPR/Cas9 edited rice plants using quantitative real-time PCR coupled with high resolution melting analysis. Food Control, 2020, 112, 107088.	2.8	13
51	Evaluation of Four Endogenous Reference Genes and Their Real-Time PCR Assays for Common Wheat Quantification in GMOs Detection. PLoS ONE, 2013, 8, e75850.	1.1	12
52	One Novel Multiple-Target Plasmid Reference Molecule Targeting Eight Genetically Modified Canola Events for Genetically Modified Canola Detection. Journal of Agricultural and Food Chemistry, 2017, 65, 8489-8500.	2.4	12
53	Development of Certified Matrix-Based Reference Material as a Calibrator for Genetically Modified Rice G6H1 Analysis. Journal of Agricultural and Food Chemistry, 2018, 66, 3708-3715.	2.4	12
54	Development and in-house validation of a reference molecule pMIR604 for simplex and duplex event-specific identification and quantification of GM maize MIR604. European Food Research and Technology, 2009, 230, 239-248.	1.6	11

#	Article	IF	CITATIONS
55	Collaborative trial for the validation of event-specific PCR detection methods of genetically modified papaya Huanong No.1. Food Chemistry, 2016, 194, 20-25.	4.2	11
56	Collaborative Ring Trial of the Papaya Endogenous Reference Gene and Its Polymerase Chain Reaction Assays for Genetically Modified Organism Analysis. Journal of Agricultural and Food Chemistry, 2013, 61, 11363-11370.	2.4	10
57	Comprehensive analysis of the molecular characterization of GM rice G6H1 using a paired-end sequencing approach. Food Chemistry, 2020, 309, 125760.	4.2	10
58	Development of eventâ€specific <scp>PCR</scp> detection methods for genetically modified tomato Huafan No. 1. Journal of the Science of Food and Agriculture, 2013, 93, 652-660.	1.7	9
59	Digital gene expression analysis of mature seeds of transgenic maize overexpressingAspergillus nigerphyA2and its non-transgenic counterpart. GM Crops and Food, 2013, 4, 98-108.	2.0	9
60	Development of event-specific qualitative and quantitative PCR detection methods for the transgenic maize BVLA430101. European Food Research and Technology, 2016, 242, 1277-1284.	1.6	9
61	Inter-laboratory validation of visual loop-mediated isothermal amplification assays for GM contents screening. Food Chemistry, 2019, 274, 659-663.	4.2	9
62	Evaluation of the Impacts of Different Nuclear DNA Content in the Hull, Endosperm, and Embryo of Rice Seeds on GM Rice Quantification. Journal of Agricultural and Food Chemistry, 2010, 58, 4582-4587.	2.4	8
63	Development of certified matrix-based reference material of genetically modified rice event TT51-1 for real-time PCR quantification. Analytical and Bioanalytical Chemistry, 2015, 407, 6731-6739.	1.9	8
64	Universal LNA Probe-Mediated Multiplex Droplet Digital Polymerase Chain Reaction for Ultrasensitive and Accurate Quantitative Analysis of Genetically Modified Organisms. Journal of Agricultural and Food Chemistry, 2021, 69, 1705-1713.	2.4	7
65	Applicability of a novel reference molecule suitable for event-specific detections of maize NK603 based on both 5′ and 3′ flanking sequences. Food Control, 2010, 21, 927-934.	2.8	6
66	Development and Interlaboratories Validation of Event-Specific Quantitative Real-Time PCR Method for Genetically Modified Rice G6H1 Event. Journal of Agricultural and Food Chemistry, 2018, 66, 8179-8186.	2.4	6
67	OsFH3 Encodes a Type II Formin Required for Rice Morphogenesis. International Journal of Molecular Sciences, 2021, 22, 13250.	1.8	6
68	Estimation of the homoplasmy degree for transplastomic tobacco using quantitative real-time PCR. European Food Research and Technology, 2010, 231, 143-150.	1.6	5
69	Establishment and In-House Validation of Simplex and Duplex PCR Methods for Event-Specific Detection of Maize SYN-E3272-5 Using a New Reference Molecule. Journal of AOAC INTERNATIONAL, 2010, 93, 663-675.	0.7	5
70	Collaborative ring trial of two real-time PCR assays for the detection of porcine- and chicken-derived material in meat products. PLoS ONE, 2018, 13, e0206609.	1.1	5
71	Novel Iodine-induced Cleavage Real-time PCR Assay for Accurate Quantification of Phosphorothioate Modified Sites in Bacterial DNA. Scientific Reports, 2019, 9, 7485.	1.6	5
72	Endogenous Reference Genes and Their Quantitative Real-Time PCR Assays for Genetically Modified Bread Wheat (Triticum aestivum L.) Detection. Methods in Molecular Biology, 2017, 1679, 259-268.	0.4	4

#	Article	IF	CITATIONS
73	LIFE‣eq: a universal <i>L</i> arge <i>I</i> ntegrated DNA <i>F</i> ragment <i>E</i> nrichment <i>Seq</i> uencing strategy for deciphering the transgene integration of genetically modified organisms. Plant Biotechnology Journal, 2022, 20, 964-976.	4.1	4
74	Development and performance evaluation of whole-genome sequencing with paired-end and mate-pair strategies in molecular characterization of GM crops: One GM rice 114-7-2 line as an example. Food Chemistry Molecular Sciences, 2022, 4, 100061.	0.9	3
75	Rice SIAH E3 Ligases Interact with RMD Formin and Affect Plant Morphology. Rice, 2022, 15, 6.	1.7	3
76	Visual Detection of Multiple Nucleic Acids in a Capillary Array. Journal of Visualized Experiments, 2017,	0.2	2
77	An Event-Specific Real-Time PCR Method for Measuring Transgenic Lysozyme Goat Content in Trace Samples. Foods, 2021, 10, 925.	1.9	2
78	Ultrasensitive Hexaplex Droplet Digital Polymerase Chain Reaction Assay for Rapid Screening and Quantification of Genetically Modified Content. ACS Agricultural Science and Technology, 2021, 1, 390-399.	1.0	2
79	A visual multiplex PCR microchip with easy sample loading. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2017, 39, 525-534.	0.1	2
80	A paired-end whole-genome sequencing approach enables comprehensive characterization of transgene integration in rice. Communications Biology, 2022, 5, .	2.0	2
81	Development of an Event-Specific Droplet Digital PCR Assay for Quantification and Evaluation of the Transgene DNAs in Trace Samples of GM PRNP-Knockout Goat. Foods, 2022, 11, 868.	1.9	1
82	Collaborative Ring Trial of the Applicability of a Reference Plasmid DNA Calibrant in the Quantitative Analysis of GM Maize Event MON810. Foods, 2022, 11, 1538.	1.9	0