Fayaz Ali

List of Publications by Citations

Source: https://exaly.com/author-pdf/4557243/fayaz-ali-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18	886	15	21
papers	citations	h-index	g-index
21 ext. papers	1,102 ext. citations	6.6 avg, IF	4.97 L-index

#	Paper	IF	Citations
18	CuO embedded chitosan spheres as antibacterial adsorbent for dyes. <i>International Journal of Biological Macromolecules</i> , 2016 , 88, 113-9	7.9	99
17	Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. <i>Scientific Reports</i> , 2018 , 8, 6260	4.9	81
16	Chitosan coated cotton cloth supported zero-valent nanoparticles: Simple but economically viable, efficient and easily retrievable catalysts. <i>Scientific Reports</i> , 2017 , 7, 16957	4.9	80
15	Anti-bacterial chitosan/zinc phthalocyanine fibers supported metallic and bimetallic nanoparticles for the removal of organic pollutants. <i>Carbohydrate Polymers</i> , 2017 , 173, 676-689	10.3	79
14	Synthesis and characterization of metal nanoparticles templated chitosan-SiO catalyst for the reduction of nitrophenols and dyes. <i>Carbohydrate Polymers</i> , 2018 , 192, 217-230	10.3	78
13	Bactericidal and catalytic performance of green nanocomposite based-on chitosan/carbon black fiber supported monometallic and bimetallic nanoparticles. <i>Chemosphere</i> , 2017 , 188, 588-598	8.4	77
12	Boron Chemistry for Medical Applications. <i>Molecules</i> , 2020 , 25,	4.8	73
11	Chitosan-coated polyurethane sponge supported metal nanoparticles for catalytic reduction of organic pollutants. <i>International Journal of Biological Macromolecules</i> , 2019 , 132, 772-783	7.9	63
10	Carbamazepine degradation by UV and UV-assisted AOPs: Kinetics, mechanism and toxicity investigations. <i>Chemical Engineering Research and Design</i> , 2018 , 117, 307-314	5.5	63
9	Copper nanoparticles embedded chitosan for efficient detection and reduction of nitroaniline. <i>International Journal of Biological Macromolecules</i> , 2019 , 131, 666-675	7.9	34
8	Chitosan coated cellulose cotton fibers as catalyst for the H2 production from NaBH4 methanolysis. <i>International Journal of Hydrogen Energy</i> , 2019 , 44, 4143-4155	6.7	31
7	Chitosan nanocomposite fibers supported copper nanoparticles based perceptive sensor and active catalyst for nitrophenol in real water. <i>Carbohydrate Polymers</i> , 2019 , 207, 650-662	10.3	31
6	Enhanced H2 generation from NaBH4 hydrolysis and methanolysis by cellulose micro-fibrous cottons as metal templated catalyst. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 6539-6550	6.7	30
5	Removal of Acid Yellow 17 Dye by Fenton Oxidation Process. <i>Zeitschrift Fur Physikalische Chemie</i> , 2018 , 232, 507-525	3.1	27
4	Lignocellulosic biomass supported metal nanoparticles for the catalytic reduction of organic pollutants. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 823-836	5.1	20
3	Metal nanoparticles supported on polyacrylamide water beads as catalyst for efficient generation of H2 from NaBH4 methanolysis. <i>International Journal of Hydrogen Energy</i> , 2020 , 45, 1532-1540	6.7	13
2	Eggshell membranes coated chitosan decorated with metal nanoparticles for the catalytic reduction of organic contaminates. <i>Carbohydrate Polymers</i> , 2021 , 259, 117681	10.3	4

Boron materials for energy applications **2022**, 203-289

1