
Gopal Krishan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4556922/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	lsotopic Assessment of Groundwater Salinity: A Case Study of the Southwest (SW) Region of Punjab, India. Water (Switzerland), 2022, 14, 133.	1.2	15
2	A century of groundwater accumulation in Pakistan and northwest India. Nature Geoscience, 2022, 15, 390-396.	5.4	20
3	During and Post-COVID-19: Challenges in Water Sector and Ethical Issues. Advances in Science, Technology and Innovation, 2021, , 319-321.	0.2	1
4	Groundwater salinity and isotope characterization: a case study from South-West Punjab, India. Environmental Earth Sciences, 2021, 80, 1.	1,3	24
5	Role of Ion Chemistry and Hydro-Geochemical Processes in Aquifer Salinization—A Case Study from a Semi-Arid Region of Haryana, India. Water (Switzerland), 2021, 13, 617.	1.2	22
6	Characterising groundwater-surface water connectivity in the lower Gandak catchment, a barrage regulated biodiversity hotspot in the mid-Gangetic basin. Journal of Hydrology, 2021, 594, 125923.	2.3	17
7	Impact of lockdown due to COVID-19 pandemic on groundwater salinity in Punjab, India: some hydrogeoethics issues. Sustainable Water Resources Management, 2021, 7, 27.	1.0	14
8	Groundwater Age Determination- Insight into Groundwater Recharge, Flow Systems and Contamination Studies. Current World Environment Journal, 2021, 16, 346-347.	0.2	1
9	Groundwater Quality Issues and Challenges for Drinking and Irrigation Uses in Central Ganga Basin Dominated with Rice-Wheat Cropping System. Water (Switzerland), 2021, 13, 2344.	1.2	13
10	lsotopes (δ180, δD and 3H) variations in groundwater with emphasis on salinization in the state of Punjab, India. Science of the Total Environment, 2021, 789, 148051.	3.9	49
11	Floodplains landforms, clay deposition and irrigation return flow govern arsenic occurrence, prevalence and mobilization: A geochemical and isotopic study of the mid-Gangetic floodplains. Environmental Research, 2021, 201, 111516.	3.7	12
12	Occurrences of potentially toxic trace metals in groundwater of the state of Punjab in northern India. Groundwater for Sustainable Development, 2021, 15, 100655.	2.3	15
13	Understanding river – subsurface water interactions in upper Ganga basin, India. International Journal of River Basin Management, 2020, 18, 243-253.	1.5	12
14	Identifying the seasonal variability in source of groundwater salinization using deuterium excess- a case study from Mewat, Haryana, India. Journal of Hydrology: Regional Studies, 2020, 31, 100724.	1.0	30
15	Evaluation of fluoride contamination in groundwater in a semi-arid region, Dausa District, Rajasthan, India. Groundwater for Sustainable Development, 2020, 11, 100465.	2.3	32
16	Understanding stable isotope systematics of salinity affected groundwater in Mewat, Haryana, India. Journal of Earth System Science, 2020, 129, 1.	0.6	18
17	Groundwater Salinity in Northwestern Region of India: A Critical Appraisal. Water Science and Technology Library, 2020, , 361-380.	0.2	7
18	Scientific Imperatives for COVID -19: Water Sector. Current World Environment Journal, 2020, 15, 05-07.	0.2	2

GOPAL KRISHAN

#	Article	IF	CITATIONS
19	Recovery Efficiency of an Aquifer Storage and Recovery (ASR) Experiment from Saline Aquifer under Controlled Conditions. Current World Environment Journal, 2020, 15, 441-445.	0.2	2
20	Development of indices for surface and ground water quality assessment and characterization for Indian conditions. Environmental Monitoring and Assessment, 2019, 191, 182.	1.3	19
21	Seasonal-to-diurnal scale isotopic signatures of tidally-influenced submarine groundwater discharge to the Bay of Bengal: Control of hydrological cycle on tropical oceans. Journal of Hydrology, 2019, 571, 697-710.	2.3	18
22	Groundwater Salinity. Current World Environment Journal, 2019, 14, 186-188.	0.2	26
23	Aquifer Management Using Isotopes. Current World Environment Journal, 2019, 14, 349-350.	0.2	0
24	Controls on water vapor isotopes over Roorkee, India: Impact of convective activities and depression systems. Journal of Hydrology, 2018, 557, 679-687.	2.3	33
25	Identification and Planning of Water Quality Monitoring Network in Context of Integrated Water Resource Management (IWRM). Water Science and Technology Library, 2018, , 513-524.	0.2	1
26	Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environmental Monitoring and Assessment, 2018, 190, 29.	1.3	74
27	Deep urban groundwater vulnerability in India revealed through the use of emerging organic contaminants and residence time tracers. Environmental Pollution, 2018, 240, 938-949.	3.7	94
28	TREND ANALYSIS OF GROUNDWATER LEVEL USING NON-PARAMETRIC TESTS IN ALLUVIAL AQUIFERS OF UTTAR PRADESH, INDIA. Current World Environment Journal, 2018, 13, 44-54.	0.2	25
29	Assessment of Heavy Metals in Relation to Soil Pollution at Mewat, Haryana, India. Current World Environment Journal, 2018, 13, 299-306.	0.2	2
30	Aquifer Characterization A Scientific Imperative in Analysis of Water Level Trend – A Case Study from Northern Punjab, India. Current World Environment Journal, 2018, 13, 87-99.	0.2	1
31	Observing changes in groundwater resource using hydro-chemical and isotopic parameters: a case study from Bist Doab, Punjab. Environmental Earth Sciences, 2017, 76, 1.	1.3	31
32	Hydrogeological typologies of the Indo-Gangetic basin alluvial aquifer, South Asia. Hydrogeology Journal, 2017, 25, 1377-1406.	0.9	117
33	Groundwater quality in the alluvial aquifer system of northwest India: New evidence of the extent of anthropogenic and geogenic contamination. Science of the Total Environment, 2017, 599-600, 1433-1444.	3.9	136
34	Assessment of Salinity and Fluoride in Groundwater of Semi-Arid Region of Punjab, India. Current World Environment Journal, 2017, 12, 34-41.	0.2	16
35	Assessment of Groundwater Quality of Agra District for the Irrigation Purpose. Current World Environment Journal, 2017, 12, 61-67.	0.2	3
36	Radon Concentration Measurement in Groundwater of Roorkee, Uttarakhand, India. Current World Environment Journal, 2017, 12, 396-400.	0.2	7

GOPAL KRISHAN

#	Article	IF	CITATIONS
37	Assessment of River Yamuna and Groundwater Interaction Using Isotopes in Agra and Mathura Area of Uttar Pradesh, India. International Journal of Hydrology, 2017, 1, .	0.2	14
38	Socio-Economic Change Impact After the closure of Mining Activities. A Case study of Aravalli Hills of Faridabad District, Haryana. Current World Environment Journal, 2017, 12, 288-297.	0.2	0
39	Hydrological Disasters Management and Risk Assessment. Current World Environment Journal, 2017, 12, 520-529.	0.2	4
40	Water Quality Assessment in Terms of Water Quality Index (WQI) Using GIS in Ballia District, Uttar Pradesh, India. , 2016, 06, .		14
41	Assessment of Water Quality Index (WQI) of Groundwater in Rajkot District, Gujarat, India. Journal of Earth Science & Climatic Change, 2016, 07, .	0.2	17
42	Groundwater quality and depletion in the Indo-Gangetic Basin mapped from inÂsituÂobservations. Nature Geoscience, 2016, 9, 762-766.	5.4	341
43	Groundwater Fluctuation and Trend in Amritsar, Punjab, India. , 2016, , 183-187.		3
44	Assessment of Variation in Water Quality Index (WQI) of Groundwater in North Goa, India. Current World Environment Journal, 2016, 11, 39-46.	0.2	3
45	Analysis of Water Level Fluctuations and TDS Variations in the Groundwater at Mewat (Nuh) District, Haryana (India). Current World Environment Journal, 2016, 11, 388-398.	0.2	16
46	Application of Isotopes in Studying Lake Water – Groundwater Interactions in Parts of Tumkur District of Karnataka. Current World Environment Journal, 2016, 11, 751-755.	0.2	3
47	Current Groundwater Conditions in Alluvial Gangetic Plains of Haridwar District, Uttarakhand, India. Current World Environment Journal, 2016, 11, 737-742.	0.2	5
48	Radon concentration in groundwater of east coast of West Bengal, India. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303, 2221.	0.7	21
49	Estimation of radon concentration in groundwater of coastal area in Baleshwar district of Odisha, India. Indoor and Built Environment, 2015, 24, 1147-1152.	1.5	9
50	Groundwater recharge and ageâ€depth profiles of intensively exploited groundwater resources in northwest India. Geophysical Research Letters, 2015, 42, 7554-7562.	1.5	79
51	Assessment of Groundwater Quality for Drinking Purpose by Using Water Quality Index (WQI) in Muzaffarnagar and Shamli Districts, Uttar Pradesh, India. Hydrology Current Research, 2015, 07, .	0.4	12
52	Spatiotemporal Variability Analysis of Groundwater Level for Water Resources Development and Management in Northern Punjab, India. , 2015, 05, .		7
53	Application of Artificial Neural Network for Groundwater Level Simulation in Amritsar and Gurdaspur Districts of Punjab, India. Journal of Earth Science & Climatic Change, 2015, 06, .	0.2	10
54	A Study on Identification of Submarine Groundwater Discharge in Northern East Coast of India. Aquatic Procedia, 2015, 4, 3-10.	0.9	26

GOPAL KRISHAN

#	Article	IF	CITATIONS
55	Rainfall Trend Analysis of Punjab, India Using Statistical Non-Parametric Test. Current World Environment Journal, 2015, 10, 792-800.	0.2	19
56	Development of an Overall Water Quality Index (OWQI) for Surface Water in Indian Context. Current World Environment Journal, 2015, 10, 813-822.	0.2	32
57	Water Level Fluctuation as the Sum of Environmental and Anthropogenic Activities in Southeast, Punjab (India). , 2015, 05, .		6
58	Monitoring of Southwest Monsoon Using Isotope Analysis of Ground Level Vapour (Glv) in Indian Sub-Continent. Journal of Earth Science & Climatic Change, 2014, 05, .	0.2	3
59	Studying Dynamics of the South West Monsoon in Indian Sub-Continent through Geospatial Correlation of Isotopes in Air Moisture. Journal of Geology & Geosciences, 2014, 03, .	0.2	4
60	Isotopic Observations from Two Stations of North India to Investigate Geographical Effects on Seasonal Air Moisture. Journal of Earth Science & Climatic Change, 2014, 05, .	0.2	4
61	Assessment of Ground Water Quality in Punjab, India. Journal of Earth Science & Climatic Change, 2014, 05, .	0.2	18
62	Evaluation of hydrogeochemistry and water quality in Bist-Doab region, Punjab, India. Environmental Earth Sciences, 2014, 72, 693-706.	1.3	36
63	Comparison of two methods for ground level vapour sampling and influence of meteorological parameters on its stable isotopic composition at Roorkee, India. Hydrological Processes, 2014, 28, 882-894.	1.1	12
64	Isotope Analysis of Air Moisture and its Applications in Hydrology. Journal of Climatology & Weather Forecasting, 2014, 2, .	0.2	5
65	Identifying Salinization Using Isotopes and Ion Chemistry in Semi-Arid Region of Punjab, India. Journal of Geology & Geosciences, 2013, 02, .	0.2	10
66	Southwest (SW) Monsoon Dynamics Study in Indo-Gangetic Plains Using Isotopic Techniques. Journal of Geology & Geosciences, 2012, 02, .	0.2	3
67	Land degradation mapping in the upper catchment of river Tons. Journal of the Indian Society of Remote Sensing, 2009, 37, 119-128.	1.2	14