Chanakha K Navaratnarajah

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4556558/chanakha-k-navaratnarajah-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

23
papers

928
citations

15
papers

1-index

25
papers

1,065
ext. papers

25
papers

1,065
ext. citations

15
papers

25
papers

3.89
papers

L-index

#	Paper	IF	Citations
23	Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediated Cell Fusion and Its Inhibition. <i>Journal of Virology</i> , 2021 , 95, e0136821	6.6	3
22	Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins. <i>Nature Structural and Molecular Biology</i> , 2021 , 28, 426-434	17.6	7
21	A recombinant Cedar virus based high-throughput screening assay for henipavirus antiviral discovery. <i>Antiviral Research</i> , 2021 , 193, 105084	10.8	
20	Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. <i>Journal of Biological Chemistry</i> , 2020 , 295, 2771-2786	5.4	29
19	Stronger together: Multi-genome transmission of measles virus. Virus Research, 2019 , 265, 74-79	6.4	13
18	-endocytosis elicited by nectins transfers cytoplasmic cargo, including infectious material, between cells. <i>Journal of Cell Science</i> , 2019 , 132,	5.3	15
17	Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by Cedar virus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 20707-20715	11.5	17
16	Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species. <i>Virology Journal</i> , 2018 , 15, 56	6.1	15
15	A Structurally Unresolved Head Segment of Defined Length Favors Proper Measles Virus Hemagglutinin Tetramerization and Efficient Membrane Fusion Triggering. <i>Journal of Virology</i> , 2016 , 90, 68-75	6.6	14
14	The measles virus hemagglutinin stalk: structures and functions of the central fusion activation and membrane-proximal segments. <i>Journal of Virology</i> , 2014 , 88, 6158-67	6.6	23
13	Different roles of the three loops forming the adhesive interface of nectin-4 in measles virus binding and cell entry, nectin-4 homodimerization, and heterodimerization with nectin-1. <i>Journal of Virology</i> , 2014 , 88, 14161-71	6.6	15
12	Structural basis of efficient contagion: measles variations on a theme by parainfluenza viruses. <i>Current Opinion in Virology</i> , 2014 , 5, 16-23	7.5	29
11	The measles virus hemagglutinin Epropeller head 🛭-🖪 hydrophobic groove governs functional interactions with nectin-4 and CD46 but not those with the signaling lymphocytic activation molecule. <i>Journal of Virology</i> , 2013 , 87, 9208-16	6.6	32
10	Development of measles virus-based shielded oncolytic vectors: suitability of other paramyxovirus glycoproteins. <i>Cancer Gene Therapy</i> , 2013 , 20, 109-16	5.4	16
9	Hydrophobic and charged residues in the central segment of the measles virus hemagglutinin stalk mediate transmission of the fusion-triggering signal. <i>Journal of Virology</i> , 2013 , 87, 10401-4	6.6	19
8	Targeted entry of enveloped viruses: measles and herpes simplex virus I. <i>Current Opinion in Virology</i> , 2012 , 2, 43-9	7.5	18
7	Base of the measles virus fusion trimer head receives the signal that triggers membrane fusion. Journal of Biological Chemistry, 2012 , 287, 33026-35	5.4	34

LIST OF PUBLICATIONS

6	Membrane fusion triggering: three modules with different structure and function in the upper half of the measles virus attachment protein stalk. <i>Journal of Biological Chemistry</i> , 2012 , 287, 38543-51	5.4	43
5	The heads of the measles virus attachment protein move to transmit the fusion-triggering signal. <i>Nature Structural and Molecular Biology</i> , 2011 , 18, 128-34	17.6	84
4	Adherens junction protein nectin-4 is the epithelial receptor for measles virus. <i>Nature</i> , 2011 , 480, 530-3	50.4	405
3	Dynamic interaction of the measles virus hemagglutinin with its receptor signaling lymphocytic activation molecule (SLAM, CD150). <i>Journal of Biological Chemistry</i> , 2008 , 283, 11763-71	5.4	57
2		5·4 3.6	57 16