Chanakha K Navaratnarajah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4556558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature, 2011, 480, 530-533.	27.8	504
2	The heads of the measles virus attachment protein move to transmit the fusion-triggering signal. Nature Structural and Molecular Biology, 2011, 18, 128-134.	8.2	90
3	Dynamic Interaction of the Measles Virus Hemagglutinin with Its Receptor Signaling Lymphocytic Activation Molecule (SLAM, CD150). Journal of Biological Chemistry, 2008, 283, 11763-11771.	3.4	60
4	Receptor-mediated cell entry of paramyxoviruses: Mechanisms, and consequences for tropism and pathogenesis. Journal of Biological Chemistry, 2020, 295, 2771-2786.	3.4	54
5	Membrane Fusion Triggering. Journal of Biological Chemistry, 2012, 287, 38543-38551.	3.4	46
6	Structural and functional analyses reveal promiscuous and species specific use of ephrin receptors by Cedar virus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20707-20715.	7.1	39
7	The Measles Virus Hemagglutinin β-Propeller Head β4-β5 Hydrophobic Groove Governs Functional Interactions with Nectin-4 and CD46 but Not Those with the Signaling Lymphocytic Activation Molecule. Journal of Virology, 2013, 87, 9208-9216.	3.4	37
8	Base of the Measles Virus Fusion Trimer Head Receives the Signal That Triggers Membrane Fusion. Journal of Biological Chemistry, 2012, 287, 33026-33035.	3.4	35
9	Structural basis of efficient contagion: measles variations on a theme by parainfluenza viruses. Current Opinion in Virology, 2014, 5, 16-23.	5.4	35
10	Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra virus fusion glycoproteins. Nature Structural and Molecular Biology, 2021, 28, 426-434.	8.2	33
11	Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediated Cell Fusion and Its Inhibition. Journal of Virology, 2021, 95, e0136821.	3.4	29
12	The Measles Virus Hemagglutinin Stalk: Structures and Functions of the Central Fusion Activation and Membrane-Proximal Segments. Journal of Virology, 2014, 88, 6158-6167.	3.4	27
13	A Heterologous Coiled Coil Can Substitute for Helix I of the Sindbis Virus Capsid Protein. Journal of Virology, 2003, 77, 8345-8353.	3.4	25
14	Trans-endocytosis elicited by nectins transfers cytoplasmic cargo including infectious material between cells. Journal of Cell Science, 2019, 132, .	2.0	25
15	Rescue and characterization of recombinant cedar virus, a non-pathogenic Henipavirus species. Virology Journal, 2018, 15, 56.	3.4	24
16	Hydrophobic and Charged Residues in the Central Segment of the Measles Virus Hemagglutinin Stalk Mediate Transmission of the Fusion-Triggering Signal. Journal of Virology, 2013, 87, 10401-10404.	3.4	21
17	Functional characterization of the Sindbis virus E2 glycoprotein by transposon linker-insertion mutagenesis. Virology, 2007, 363, 134-147.	2.4	20
18	Targeted entry of enveloped viruses: measles and herpes simplex virus I. Current Opinion in Virology, 2012, 2, 43-49.	5.4	19

#	Article	IF	CITATIONS
19	Development of measles virus-based shielded oncolytic vectors: suitability of other paramyxovirus glycoproteins. Cancer Gene Therapy, 2013, 20, 109-116.	4.6	19
20	Stronger together: Multi-genome transmission of measles virus. Virus Research, 2019, 265, 74-79.	2.2	19
21	A Structurally Unresolved Head Segment of Defined Length Favors Proper Measles Virus Hemagglutinin Tetramerization and Efficient Membrane Fusion Triggering. Journal of Virology, 2016, 90, 68-75.	3.4	18
22	Different Roles of the Three Loops Forming the Adhesive Interface of Nectin-4 in Measles Virus Binding and Cell Entry, Nectin-4 Homodimerization, and Heterodimerization with Nectin-1. Journal of Virology, 2014, 88, 14161-14171.	3.4	17
23	A recombinant Cedar virus based high-throughput screening assay for henipavirus antiviral discovery. Antiviral Research, 2021, 193, 105084.	4.1	5
24	B-AB18-03 SARS-COV-2 DIRECT CARDIAC DAMAGE THROUGH SPIKE-MEDIATED CARDIOMYOCYTE FUSION MAY CONTRIBUTE TO INCREASED ARRHYTHMIC RISK IN COVID-19. Heart Rhythm, 2021, 18, S35.	0.7	1