
Christopher Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/455633/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global comparison of the goodness-of-fit of wind speed distributions. Energy Conversion and Management, 2017, 133, 216-234.	9.2	89
2	Wind speed distribution selection – A review of recent development and progress. Renewable and Sustainable Energy Reviews, 2019, 114, 109290.	16.4	85
3	Introducing a system of wind speed distributions for modeling properties of wind speed regimes around the world. Energy Conversion and Management, 2017, 144, 181-192.	9.2	58
4	National and global wind resource assessment under six wind turbine installation scenarios. Energy Conversion and Management, 2018, 156, 403-415.	9.2	53
5	The temporal variability of global wind energy – Long-term trends and inter-annual variability. Energy Conversion and Management, 2019, 188, 462-472.	9.2	50
6	The role of air density in wind energy assessment – A case study from Germany. Energy, 2019, 171, 385-392.	8.8	50
7	On the spatiotemporal variability and potential of complementarity of wind and solar resources. Energy Conversion and Management, 2020, 218, 113016.	9.2	49
8	Changing wind speed distributions under future global climate. Energy Conversion and Management, 2019, 198, 111841.	9.2	37
9	Development of a statistical bivariate wind speed-wind shear model (WSWS) to quantify the height-dependent wind resource. Energy Conversion and Management, 2017, 149, 303-317.	9.2	34
10	On the inter-annual variability of wind energy generation – A case study from Germany. Applied Energy, 2018, 230, 845-854.	10.1	33
11	The role of the power law exponent in wind energy assessment: A global analysis. International Journal of Energy Research, 2021, 45, 8484-8496.	4.5	31
12	Achieving Germany's wind energy expansion target with an improved wind turbine siting approach. Energy Conversion and Management, 2018, 173, 383-398.	9.2	29
13	Introducing a new approach for wind energy potential assessment under climate change at the wind turbine scale. Energy Conversion and Management, 2020, 225, 113425.	9.2	28
14	On the influence of wind speed model resolution on the global technical wind energy potential. Renewable and Sustainable Energy Reviews, 2022, 156, 112001.	16.4	27
15	3D statistical mapping of Germany's wind resource using WSWS. Energy Conversion and Management, 2018, 159, 96-108.	9.2	25
16	Sensitivity analysis of the system of wind speed distributions. Energy Conversion and Management, 2018, 177, 376-384.	9.2	25
17	High Spatial Resolution Simulation of Annual Wind Energy Yield Using Near-Surface Wind Speed Time Series. Energies, 2016, 9, 344.	3.1	24
18	Copula-based estimation of directional wind energy yield: A case study from Germany. Energy Conversion and Management, 2018, 169, 359-370.	9.2	24

CHRISTOPHER JUNG

#	Article	IF	CITATIONS
19	Integration of small-scale surface properties in a new high resolution global wind speed model. Energy Conversion and Management, 2020, 210, 112733.	9.2	24
20	Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor. Nature Energy, 2022, 7, 608-619.	39.5	24
21	Using highly resolved maximum gust speed as predictor for forest storm damage caused by the highâ€impact winter storm Lothar in Southwest Germany. Atmospheric Science Letters, 2016, 17, 462-469.	1.9	23
22	Fossil fuel reduction potential in Germany's transport sector by wind-to-hydrogen. International Journal of Hydrogen Energy, 2018, 43, 23161-23167.	7.1	22
23	Modelling monthly nearâ€surface maximum daily gust speed distributions in Southwest Germany. International Journal of Climatology, 2016, 36, 4058-4070.	3.5	21
24	Sounding out the repowering potential of wind energy – A scenario-based assessment from Germany. Journal of Cleaner Production, 2021, 293, 126094.	9.3	20
25	Global Gust Climate Evaluation and Its Influence on Wind Turbines. Energies, 2017, 10, 1474.	3.1	18
26	The Role of Highly-Resolved Gust Speed in Simulations of Storm Damage in Forests at the Landscape Scale: A Case Study from Southwest Germany. Atmosphere, 2016, 7, 7.	2.3	17
27	On the Annual Cycle of Meteorological and Geographical Potential of Wind Energy: A Case Study from Southwest Germany. Sustainability, 2017, 9, 1169.	3.2	17
28	Historical Winter Storm Atlas for Germany (GeWiSA). Atmosphere, 2019, 10, 387.	2.3	17
29	Distance to power grids and consideration criteria reduce global wind energy potential the most. Journal of Cleaner Production, 2021, 317, 128472.	9.3	17
30	A review of recent studies on wind resource projections under climate change. Renewable and Sustainable Energy Reviews, 2022, 165, 112596.	16.4	17
31	Improving empirical storm damage models by coupling with high-resolution gust speed data. Agricultural and Forest Meteorology, 2019, 268, 23-31.	4.8	15
32	The annual cycle and intra-annual variability of the global wind power distribution estimated by the system of wind speed distributions. Sustainable Energy Technologies and Assessments, 2020, 42, 100852.	2.7	10
33	A global wind farm potential index to increase energy yields and accessibility. Energy, 2021, 231, 120923.	8.8	10
34	Getting more with less? Why repowering onshore wind farms does not always lead to more wind power generation – A German case study. Renewable Energy, 2021, 180, 245-257.	8.9	10
35	On the spatiotemporal complementarity of the European onshore wind resource. Energy Conversion and Management, 2021, 237, 114098.	9.2	8
36	Modeling wind turbine-related greenhouse gas payback times in Europe at high spatial resolution. Energy Conversion and Management, 2021, 243, 114334.	9.2	4

CHRISTOPHER JUNG

#	Article	IF	CITATIONS
37	Does the winter storm-related wind gust intensity in Germany increase under warming climate? – A high-resolution assessment. Weather and Climate Extremes, 2021, 33, 100360.	4.1	4
38	Greenhouse Gas Savings Potential under Repowering of Onshore Wind Turbines and Climate Change: A Case Study from Germany. Wind, 2021, 1, 1-19.	1.5	3
39	Precipitation Atlas for Germany (GePrA). Atmosphere, 2019, 10, 737.	2.3	2
40	Highly resolved modeling of extreme wind speed in North America and Europe. Atmospheric Science Letters, 0, , .	1.9	2