

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4556286/publications.pdf Version: 2024-02-01

HONCL

#	Article	IF	CITATIONS
1	Engineering of flat bands and Dirac bands in two-dimensional covalent organic frameworks (COFs): relationships among molecular orbital symmetry, lattice symmetry, and electronic-structure characteristics. Materials Horizons, 2022, 9, 88-98.	6.4	33
2	Evolution of the Nature of Excitons and Electronic Couplings in Hybrid 2D Perovskites as a Function of Organic Cation le onjugation. Advanced Functional Materials, 2022, 32, 2108662.	7.8	15
3	Controlled nâ€Doping of Naphthaleneâ€Diimideâ€Based 2D Polymers. Advanced Materials, 2022, 34, e2101932.	11.1	13
4	Engineering Surface Orientations for Efficient and Stable Hybrid Perovskite Single-Crystal Solar Cells. ACS Energy Letters, 2022, 7, 1544-1552.	8.8	24
5	Organic self-assembled monolayers on superconducting NbSe ₂ : interfacial electronic structure and energetics*. Journal of Physics Condensed Matter, 2022, 34, 294003.	0.7	2
6	Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. Nature Materials, 2021, 20, 1142-1148.	13.3	158
7	Impact of Imine Bond Orientations on the Geometric and Electronic Structures of Imineâ€based Covalent Organic Frameworks. Chemistry - an Asian Journal, 2021, 16, 3781-3789.	1.7	14
8	Revealing the Local Electronic Structure of a Single-Layer Covalent Organic Framework through Electronic Decoupling. Nano Letters, 2020, 20, 963-970.	4.5	28
9	Humidity Sensing through Reversible Isomerization of a Covalent Organic Framework. Journal of the American Chemical Society, 2020, 142, 783-791.	6.6	190
10	Doping Modulation of the Charge Injection Barrier between a Covalent Organic Framework Monolayer and Graphene. Chemistry of Materials, 2020, 32, 9228-9237.	3.2	18
11	Mechanism of Formation of Benzotrithiophene-Based Covalent Organic Framework Monolayers on Coinage-Metal Surfaces: C–C Coupling Selectivity and Monomer–Metal Interactions. Chemistry of Materials, 2020, 32, 10688-10696.	3.2	6
12	Electronically Coupled 2D Polymer/MoS ₂ Heterostructures. Journal of the American Chemical Society, 2020, 142, 21131-21139.	6.6	25
13	Structural and Electronic Impact of an Asymmetric Organic Ligand in Diammonium Lead Iodide Perovskites. Advanced Energy Materials, 2020, 10, 1903900.	10.2	17
14	Pathway Complexity in the Stacking of Imine-Linked Macrocycles Related to Two-Dimensional Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 7104-7111.	3.2	22
15	Dynamically Switching the Electronic and Electrostatic Properties of Indium–Tin Oxide Electrodes with Photochromic Monolayers: Toward Photoswitchable Optoelectronic Devices. ACS Applied Nano Materials, 2019, 2, 1102-1110.	2.4	20
16	Quantum Well Energetics of an <i>n</i> = 2 Ruddlesden–Popper Phase Perovskite. Advanced Energy Materials, 2019, 9, 1901005.	10.2	25
17	Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Materials Horizons, 2019, 6, 1868-1876.	6.4	62
18	Emergence of an Antiferromagnetic Mott Insulating Phase in Hexagonal Ï€â€Conjugated Covalent Organic Frameworks. Advanced Materials, 2019, 31, e1900355.	11.1	37

Hong Li

#	Article	IF	CITATIONS
19	Electronic Structure of Two-Dimensional π-Conjugated Covalent Organic Frameworks. Chemistry of Materials, 2019, 31, 3051-3065.	3.2	105
20	Local Electronic Structure of Molecular Heterojunctions in a Single‣ayer 2D Covalent Organic Framework. Advanced Materials, 2019, 31, e1805941.	11.1	74
21	Impact of Organic Spacers on the Carrier Dynamics in 2D Hybrid Lead-Halide Perovskites. ACS Energy Letters, 2019, 4, 17-25.	8.8	44
22	Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nature Materials, 2018, 17, 253-260.	13.3	556
23	Characterization of the Valence and Conduction Band Levels of <i>n</i> = 1 2D Perovskites: A Combined Experimental and Theoretical Investigation. Advanced Energy Materials, 2018, 8, 1703468.	10.2	76
24	Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework. ACS Nano, 2018, 12, 385-391.	7.3	68
25	Layer-Dependent Rashba Band Splitting in 2D Hybrid Perovskites. Chemistry of Materials, 2018, 30, 8538-8545.	3.2	92
26	Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites. ACS Energy Letters, 2017, 2, 417-423.	8.8	140
27	Reduction of the Work Function of Gold by N-Heterocyclic Carbenes. Chemistry of Materials, 2017, 29, 3403-3411.	3.2	76
28	Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency. Nature Communications, 2017, 8, 79.	5.8	198
29	Comparison of the Impact of Zinc Vacancies on Charge Separation and Charge Transfer at ZnO/Sexithienyl and ZnO/Fullerene Interfaces. Advanced Materials, 2016, 28, 3928-3936.	11.1	26
30	Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. Chemical Reviews, 2016, 116, 7117-7158.	23.0	189
31	Effect of Molecular Packing and Charge Delocalization on the Nonradiative Recombination of Chargeâ€Transfer States in Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1601325.	10.2	103
32	Defectâ€Ðriven Interfacial Electronic Structures at an Organic/Metalâ€Oxide Semiconductor Heterojunction. Advanced Materials, 2014, 26, 4711-4716.	11.1	46
33	Tailoring Electronâ€Transfer Barriers for Zinc Oxide/C ₆₀ Fullerene Interfaces. Advanced Functional Materials, 2014, 24, 7381-7389.	7.8	54
34	Competing Effects of Fluorination on the Orientation of Aromatic and Aliphatic Phosphonic Acid Monolayers on Indium Tin Oxide. Journal of Physical Chemistry C, 2013, 117, 15139-15147.	1.5	40
35	Orientation of Phenylphosphonic Acid Self-Assembled Monolayers on a Transparent Conductive Oxide: A Combined NEXAFS, PM-IRRAS, and DFT Study. Langmuir, 2013, 29, 2166-2174.	1.6	61
36	Workâ€Function Modification of Au and Ag Surfaces upon Deposition of Selfâ€Assembled Monolayers: Influence of the Choice of the Theoretical Approach and the Thiol Decomposition Scheme. ChemPhysChem, 2013, 14, 2939-2946.	1.0	14

Hong Li

#	Article	IF	CITATIONS
37	Binding Modes of Fluorinated Benzylphosphonic Acids on the Polar ZnO Surface and Impact on Work Function. Journal of Physical Chemistry C, 2012, 116, 19125-19133.	1.5	56
38	Single-Layer MoS ₂ Phototransistors. ACS Nano, 2012, 6, 74-80.	7.3	3,103
39	A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science, 2012, 336, 327-332.	6.0	1,878
40	Surface Modification of Indiumâ€Tinâ€Oxide Via Selfâ€Assembly of a Donorâ€Acceptor Complex: A Density Functional Theory Study. Advanced Materials, 2012, 24, 687-693.	11.1	10
41	Theoretical study of the surface modification of indium tin oxide with trifluorophenyl phosphonic acid molecules: impact of coverage density and binding geometry. Journal of Materials Chemistry, 2010, 20, 2630.	6.7	76
42	Modification of the Surface Properties of Indium Tin Oxide with Benzylphosphonic Acids: A Joint Experimental and Theoretical Study. Advanced Materials, 2009, 21, 4496-4501.	11.1	152
43	Electronic structure of the pentacene–gold interface: A density-functional theory study. Organic Electronics, 2009, 10, 1571-1578.	1.4	25
44	Electronic structure of self-assembled (fluoro)methylthiol monolayers on the Au(111) surface: Impact of fluorination and coverage density. Journal of Electron Spectroscopy and Related Phenomena, 2009, 174, 70-77.	0.8	12