Chuan Peng

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4556262/chuan-peng-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

18 1,138 30 30 h-index g-index citations papers 7.8 4.46 30 1,499 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
30	Low temperature co-pyrolysis of food waste with PVC-derived char: Products distributions, char properties and mechanism of bio-oil upgrading. <i>Energy</i> , 2021 , 219, 119670	7.9	8
29	Feasibility and risk assessment of heavy metals from low-temperature magnetic pyrolysis of municipal solid waste on a pilot scale. <i>Chemosphere</i> , 2021 , 277, 130362	8.4	1
28	Effect of temperature on the sulfur fate during hydrothermal carbonization of sewage sludge. <i>Environmental Pollution</i> , 2020 , 260, 114067	9.3	26
27	In-depth comparison of morphology, microstructure, and pathway of char derived from sewage sludge and relevant model compounds. <i>Waste Management</i> , 2020 , 102, 432-440	8.6	6
26	Co-hydrothermal carbonization of food waste-woody sawdust blend: Interaction effects on the hydrochar properties and nutrients characteristics. <i>Bioresource Technology</i> , 2020 , 316, 123900	11	20
25	Pelletizing of hydrochar biofuels with organic binders. <i>Fuel</i> , 2020 , 280, 118659	7.1	9
24	What is the influence of the nitrogen-containing composition during hydrothermal carbonization of biomass? A new perspective from mimic feedstock. <i>Bioresource Technology Reports</i> , 2019 , 5, 343-350	4.1	13
23	Blunted Cardiac AMPK Response is Associated with Susceptibility to Ischemia/Reperfusion in Male Offspring of Gestational Diabetic Rats. <i>Cellular Physiology and Biochemistry</i> , 2019 , 52, 1103-1116	3.9	3
22	Fabrication of bean dreg-derived carbon with high adsorption for methylene blue: Effect of hydrothermal pretreatment and pyrolysis process. <i>Bioresource Technology</i> , 2019 , 274, 525-532	11	28
21	Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. <i>Bioresource Technology</i> , 2018 , 247, 182-189	11	93
20	Co-hydrothermal carbonization of food waste-woody biomass blend towards biofuel pellets production. <i>Bioresource Technology</i> , 2018 , 267, 371-377	11	56
19	Evaluation of the clean characteristics and combustion behavior of hydrochar derived from food waste towards solid biofuel production. <i>Bioresource Technology</i> , 2018 , 266, 275-283	11	51
18	Production of fuel pellets via hydrothermal carbonization of food waste using molasses as a binder. <i>Waste Management</i> , 2018 , 77, 185-194	8.6	39
17	Promoting Effect of ZSM-5 Catalyst on Carbonization via Hydrothermal Conversion of Sewage Sludge. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9461-9469	8.3	12
16	Hydrothermal carbonisation of sewage sludge for char production with different waste biomass: Effects of reaction temperature and energy recycling. <i>Energy</i> , 2017 , 127, 167-174	7.9	80
15	Are silver nanoparticles always toxic in the presence of environmental anions?. <i>Chemosphere</i> , 2017 , 171, 318-323	8.4	14
14	Acetic Acid and Sodium Hydroxide-Aided Hydrothermal Carbonization of Woody Biomass for Enhanced Pelletization and Fuel Properties. <i>Energy & Enhanced Pelletization and Fuel Properties</i> . <i>Energy & Enhanced Pelletization and Fuel Properties</i> . <i>Energy & Energy & Ener</i>	4.1	45

LIST OF PUBLICATIONS

13	Effect of sewage sludge hydrochar on soil properties and Cd immobilization in a contaminated soil. <i>Chemosphere</i> , 2017 , 189, 627-633	8.4	33
12	Feedwater pH affects phosphorus transformation during hydrothermal carbonization of sewage sludge. <i>Bioresource Technology</i> , 2017 , 245, 182-187	11	62
11	Evaluating the potential impact of hydrochar on the production of short-chain fatty acid from sludge anaerobic digestion. <i>Bioresource Technology</i> , 2017 , 246, 234-241	11	34
10	Distribution and Conversion of Polycyclic Aromatic Hydrocarbons during the Hydrothermal Treatment of Sewage Sludge. <i>Energy & Fuels</i> , 2017 , 31, 9542-9549	4.1	8
9	Investigation of the structure and reaction pathway of char obtained from sewage sludge with biomass wastes, using hydrothermal treatment. <i>Journal of Cleaner Production</i> , 2017 , 166, 114-123	10.3	48
8	Hydrothermal carbonization of sewage sludge: The effect of feed-water pH on fate and risk of heavy metals in hydrochars. <i>Bioresource Technology</i> , 2016 , 218, 183-8	11	86
7	Simultaneous total organic carbon and humic acid removals for landfill leachate using subcritical water catalytic oxidation based on response surface methodology. <i>Water, Air, and Soil Pollution</i> , 2016 , 227, 1	2.6	3
6	Source Apportionment Coupled with Gas/Particle Partitioning Theory and Risk Assessment of Polycyclic Aromatic Hydrocarbons Associated with Size-Segregated Airborne Particulate Matter. <i>Water, Air, and Soil Pollution</i> , 2016 , 227, 1	2.6	17
5	Nitrogen-doped porous carbon from Camellia oleifera shells with enhanced electrochemical performance. <i>Materials Science and Engineering C</i> , 2016 , 61, 449-56	8.3	21
4	Production of char from sewage sludge employing hydrothermal carbonization: Char properties, combustion behavior and thermal characteristics. <i>Fuel</i> , 2016 , 176, 110-118	7.1	223
3	Traffic-related heavy metals uptake by wild plants grow along two main highways in Hunan Province, China: effects of soil factors, accumulation ability, and biological indication potential. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 13368-77	5.1	22
2	The adsorption mechanisms of ClO4lbnto highly graphited and hydrophobic porous carbonaceous materials from biomass. <i>RSC Advances</i> , 2016 , 6, 93975-93984	3.7	3
1	Mass concentration and health risk assessment of heavy metals in size-segregated airborne particulate matter in Changsha. <i>Science of the Total Environment</i> , 2015 , 517, 215-21	10.2	74