MarÃ-a Luisa Rua-RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/455624/publications.pdf Version: 2024-02-01

201575 243529 70 2,139 27 44 g-index citations h-index papers 72 72 72 1887 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Reactivity of a Recombinant Esterase from Thermus thermophilus HB27 in Aqueous and Organic Media. Microorganisms, 2022, 10, 915.	1.6	1
2	Microencapsulation of Lactobacillus plantarum in W/O emulsions of okara oil and block-copolymers of poly(acrylic acid) and pluronic using microfluidic devices. Food Research International, 2021, 140, 110053.	2.9	22
3	Optimisation of bovine β-lactoglobulin hydrolysis using cardosins from dried flowers of Cynara cardunculus. Food Chemistry, 2021, 345, 128741.	4.2	2
4	Are There Benefits from Thermal Bacteria for Health? The Hydrogenome Role. Water (Switzerland), 2021, 13, 1439.	1.2	1
5	Biofunctionality assessment of α-lactalbumin nanotubes. Food Hydrocolloids, 2021, 117, 106665.	5.6	14
6	Effectiveness of proteolytic enzymes to remove gluten residues and feasibility of incorporating them into cleaning products for industrial purposes. Food Research International, 2019, 120, 167-177.	2.9	11
7	One-step chromatographic method to purify α-lactalbumin from whey for nanotube synthesis purposes. Food Chemistry, 2019, 275, 480-488.	4.2	16
8	Changes of the shelf life of candelilla wax/tarbush bioactive based-nanocoated apples at industrial level conditions. Scientia Horticulturae, 2018, 231, 43-48.	1.7	22
9	Contribution of the Oligomeric State to the Thermostability of Isoenzyme 3 from Candida rugosa. Microorganisms, 2018, 6, 108.	1.6	14
10	Nanocoating with extract of tarbush to retard Fuji apples senescence. Postharvest Biology and Technology, 2017, 134, 67-75.	2.9	16
11	Evaluation of antimicrobial effectiveness of pimaricin-loaded thermosensitive nanohydrogel coating on Arzúa-Ulloa DOP cheeses. Food Control, 2017, 73, 1095-1104.	2.8	9
12	Creating functional nanostructures: Encapsulation of caffeine into α-lactalbumin nanotubes. Innovative Food Science and Emerging Technologies, 2017, 40, 10-17.	2.7	50
13	Influence of pH on viscoelastic properties of heat-induced gels obtained with a β-Lactoglobulin fraction isolated from bovine milk whey hydrolysates. Food Chemistry, 2017, 219, 169-178.	4.2	10
14	Functional Foods. , 2017, , 165-200.		3
15	An Overview on Extremophilic Esterases. , 2017, , 181-204.		1
16	Smart Nanohydrogels for Controlled Release of Food Preservatives. , 2016, , 349-362.		5
17	Experimental protocol for the recovery and evaluation of bioactive compounds of tarbush against postharvest fruit fungi. Food Chemistry, 2016, 198, 62-67.	4.2	21
18	Structural and thermo-rheological analysis of solutions and gels of a β-lactoglobulin fraction isolated from bovine whey. Food Chemistry, 2016, 198, 45-53.	4.2	9

#	Article	IF	CITATIONS
19	Evaluation of Antimicrobial Effectiveness of Pimaricin-Loaded Thermosensitive Nanohydrogels in Grape Juice. Food and Bioprocess Technology, 2015, 8, 1583-1592.	2.6	7
20	Functional Characterisation and Antimicrobial Efficiency Assessment of Smart Nanohydrogels Containing Natamycin Incorporated into Polysaccharide-Based Films. Food and Bioprocess Technology, 2015, 8, 1430-1441.	2.6	21
21	Temperature- and pH-Sensitive Nanohydrogels of Poly(N-Isopropylacrylamide) for Food Packaging Applications: Modelling the Swelling-Collapse Behaviour. PLoS ONE, 2014, 9, e87190.	1.1	59
22	Cloning, expression, purification and characterization of an oligomeric His-tagged thermophilic esterase from Thermus thermophilus HB27. Process Biochemistry, 2014, 49, 927-935.	1.8	17
23	Functional Characterization of Poly(N-isopropylacrylamide) Nanohydrogels for the Controlled Release of Food Preservatives. Food and Bioprocess Technology, 2014, 7, 3429-3441.	2.6	17
24	Overall quality properties in pressurized kiwi purée: Microbial, physicochemical, nutritive and sensory tests during refrigerated storage. Innovative Food Science and Emerging Technologies, 2013, 20, 64-72.	2.7	33
25	Lipases and Esterases from Extremophiles: Overview and Case Example of the Production and Purification of an Esterase from Thermus thermophilus HB27. Methods in Molecular Biology, 2012, 861, 239-266.	0.4	38
26	Modeling the angiotensinâ€converting enzyme inhibitory activity of peptide mixtures obtained from cheese whey hydrolysates using concentration–response curves. Biotechnology Progress, 2012, 28, 1197-1206.	1.3	24
27	Use of Poly(Nâ€isopropylacrylamide) Nanohydrogels for the Controlled Release of Pimaricin in Active Packaging. Journal of Food Science, 2012, 77, N21-8.	1.5	34
28	Modelling the enzymatic activity of two lipases isoenzymes commonly used in the food industry Modelado de la actividad enzimática de dos isoenzimas lipasas comúnmente utilizadas en la industria alimentaria. CYTA - Journal of Food, 2011, 9, 307-313.	0.9	2
29	Production and characterization of two N-terminal truncated esterases from Thermus thermophilus HB27 in a mesophilic yeast: Effect of N-terminus in thermal activity and stability. Protein Expression and Purification, 2011, 78, 120-130.	0.6	17
30	The proton pressure tensor as a new proxy of the proton decoupling region in collisionless magnetic reconnection. Annales Geophysicae, 2011, 29, 1571-1579.	0.6	16
31	An esterase from Thermus thermophilus HB27 with hyper-thermoalkalophilic properties: Purification, characterisation and structural modelling. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 127-137.	1.8	21
32	Conformational Flexibility of Lipase Lip1 from Candida Rugosa Studied by Electronic Spectroscopies and Thermodynamic Approaches. Protein Journal, 2011, 30, 77-83.	0.7	5
33	Thermostable lipolytic enzymes production in batch and continuous cultures of Thermus thermophilus HB27. Bioprocess and Biosystems Engineering, 2010, 33, 347-354.	1.7	15
34	Recombinant <i>Candida rugosa</i> lipase 2 from <i>Pichia pastoris</i> : Immobilization and use as biocatalyst in a stereoselective reaction. Biotechnology Progress, 2010, 26, 1252-1258.	1.3	9
35	Heterologous expression of an esterase from Thermus thermophilus HB27 in Saccharomyces cerevisiae. Journal of Biotechnology, 2010, 145, 226-232.	1.9	25
36	Assessment of Relevant Factors Influencing Lipolytic Enzyme Production by <i>Thermus thermophilus </i> HB27 in Laboratoryâ€Scale Bioreactors. Chemical Engineering and Technology, 2009, 32, 606-612.	0.9	21

#	Article	IF	CITATIONS
37	Production and characterization of two heterologous esterases from Thermus thermophilus in a mesophilic yeast. New Biotechnology, 2009, 25, S137.	2.4	0
38	Regulation of the interfacial activation within the <i>Candida rugosa</i> lipase family. Journal of Physical Organic Chemistry, 2009, 22, 508-514.	0.9	14
39	Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresource Technology, 2009, 100, 3630-3637.	4.8	57
40	Thermal spring water enhances lipolytic activity in Thermus thermophilus HB27. Process Biochemistry, 2008, 43, 1383-1390.	1.8	18
41	Reactivity of Pure Candida rugosa Lipase Isoenzymes (Lip1, Lip2, and Lip3) in Aqueous and Organic Media. Influence of the Isoenzymatic Profile on the Lipase Performance in Organic Media. Biotechnology Progress, 2008, 20, 65-73.	1.3	67
42	Purification, Immobilization, and Stabilization of a Lipase from Bacillus thermocatenulatus by Interfacial Adsorption on Hydrophobic Supports. Biotechnology Progress, 2008, 20, 630-635.	1.3	68
43	Production of Thermostable Lipolytic Activity by Thermus Species. Biotechnology Progress, 2008, 21, 1198-1205.	1.3	35
44	Stimulation of novel thermostable extracellular lipolytic enzyme in cultures of Thermus sp Enzyme and Microbial Technology, 2007, 40, 187-194.	1.6	19
45	Lipolytic enzyme production by Thermus thermophilus HB27 in a stirred tank bioreactor. Biochemical Engineering Journal, 2005, 26, 95-99.	1.8	44
46	Fractionation and characterization of proteins from <i>Gevuina avellana</i> and <i>Rosa rubiginosa</i> seeds. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 169-173.	0.8	1
47	Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: Partial purification and preliminary biochemical characterisation. Journal of Biotechnology, 2005, 117, 233-241.	1.9	63
48	Quantification of intra- and extra-cellular thermophilic lipase/esterase production by Thermus sp Biotechnology Letters, 2004, 26, 705-708.	1.1	34
49	Evaluation of the lipase from Bacillus thermocatenulatus as an enantioselective biocatalyst. Tetrahedron: Asymmetry, 2003, 14, 3679-3687.	1.8	38
50	Crystallization and preliminary X-ray diffraction studies of two different crystal forms of the lipase 2 isoform from the yeastCandida rugosa. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 499-501.	2.5	5
51	Structural Insights into the Lipase/esterase Behavior in the Candida rugosa Lipases Family: Crystal Structure of the Lipase 2 Isoenzyme at 1.97Ã Resolution. Journal of Molecular Biology, 2003, 332, 1059-1069.	2.0	95
52	Structural basis for the kinetics of Candida rugosa Lip1 and Lip3 isoenzymes. Colloids and Surfaces B: Biointerfaces, 2002, 26, 67-74.	2.5	8
53	Heptyl oleate synthesis as useful tool to discriminate between lipases, proteases and other hydrolases in crude preparations. Enzyme and Microbial Technology, 2002, 31, 283-288.	1.6	23
54	Aqueous Extraction and Membrane Isolation of Protein from Defatted Gevuina avellana. Journal of Food Science, 2002, 67, 688-696.	1.5	19

#	Article	IF	CITATIONS
55	Influence of the conformational flexibility on the kinetics and dimerisation process of twoCandida rugosalipase isoenzymes. FEBS Letters, 2001, 501, 87-91.	1.3	42
56	Nutritional factors affecting the production of two bacteriocins from lactic acid bacteria on whey. International Journal of Food Microbiology, 2001, 70, 267-281.	2.1	95
57	Purification and characterization of two isoforms from Candida rugosa lipase B. Biotechnology Letters, 2000, 22, 1291-1294.	1.1	21
58	Purification and characterization of Lip2 and Lip3 isoenzymes from a Candida rugosa pilot-plant scale fed-batch fermentation. Journal of Biotechnology, 2000, 84, 163-174.	1.9	51
59	Characterization of the lipase and esterase multiple forms in an enzyme preparation from a Candida rugosa pilot-plant scale fed-batch fermentation. Enzyme and Microbial Technology, 1999, 25, 214-223.	1.6	38
60	A controlled fed-batch cultivation for the production of new crude lipases from Candida rugosa with improved properties in fine chemistry. Journal of Biotechnology, 1999, 69, 169-182.	1.9	34
61	High-level expression of the thermoalkalophilic lipase from Bacillus thermocatenulatus in Escherichia coli. Applied Microbiology and Biotechnology, 1998, 49, 405-410.	1.7	35
62	<i>Bacillus thermocatenulatus</i> lipase: a thermoalkalophilic lipase with interesting properties. Biochemical Society Transactions, 1997, 25, 178-182.	1.6	25
63	[11] Two novel lipases from thermophile Bacillus thermocatenulatus: Screening, purification, cloning, overexpression, and properties. Methods in Enzymology, 1997, 284, 194-220.	0.4	51
64	Thermoalkalophilic lipase of Bacillus thermocatenulatus. I. Molecular cloning, nucleotide sequence, purification and some properties. Lipids and Lipid Metabolism, 1996, 1301, 105-114.	2.6	180
65	Influence of the hydrophobicity of lipase isoenzymes fromCandida rugosaon its hydrolytic activity in reverse micelles. FEBS Letters, 1995, 360, 202-206.	1.3	28
66	Contribution to the study of the alteration of lipase activity ofCandida rugosa by ions and buffers. Applied Biochemistry and Biotechnology, 1994, 44, 213-229.	1.4	31
67	Purification and characterization of two distinct lipases from Candida cylindracea. Biochimica Et Biophysica Acta - General Subjects, 1993, 1156, 181-189.	1.1	197
68	Hydrolysis and Synthesis of Butyrylglycerols by Lipases. Annals of the New York Academy of Sciences, 1990, 613, 523-528.	1.8	9
69	Inhibition of Desulfovibrio gigas hydrogenase with copper salts and other metal ions. FEBS Journal, 1989, 185, 449-454.	0.2	28
70	Changes in levels of peroxidases and phenolics during root formation in Vitis cultured in vitro. Physiologia Plantarum, 1988, 72, 84-88.	2.6	57